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We investigate the decidability of the feasibility problem for imperative programs with

bounded loops. A program is called feasible if all values it computes are polynomially
bounded in terms of the input. The feasibility problem is representative of a group of

related properties, like that of polynomial time complexity. It is well known that such

properties are undecidable for a Turing-complete programming language. They may be
decidable, however, for languages that are not Turing-complete. But if these languages

are expressive enough, they do pose a challenge for analysis. We are interested in tracing

the edge of decidability for the feasibility problem and similar problems.
In previous work, we proved that such problems are decidable for a language where

loops are bounded but indefinite (that is, the loops may exit before completing the
given iteration count). In this paper, we consider definite loops. A second language

feature that we vary, is the kind of assignment statements. With ordinary assignment,

we prove undecidability of a very tiny language fragment. We also prove undecidability
with lossy assignment (that is, assignments where the modified variable may receive any
value bounded by the given expression, even zero). But we prove decidability with max

assignments (that is, assignments where the modified variable never decreases its value).
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X ∈ Variable ::= X1 | X2 | X3 | . . . | Xn
e ∈ Expression ::= X | (e + e) | (e * e)

C ∈ Command ::= skip | X:=e | C1;C2 | ?loop X {C}
| if ? then C else C

Fig. 1. Syntax of the language LBJK.

1. Introduction

1.1. Background

Devising algorithms that deduce complexity properties of a given program is a clas-

sic problem of program analysis [23, 19, 16], and has received considerable attention

in recent years, e.g., see the LNCS volume [22]. Ideally, a static-analysis tool will

warn us in compilation-time whenever our program fails a complexity specification.

For instance, we could be warned of algorithms whose running time is not polyno-

mially bounded, or algorithms that compute super-polynomially large values.

Since deciding such a properties precisely for any program in a Turing-complete

language is impossible, we are led to investigate the decidability of the problem in

restricted languages. In previous work [3], we showed the problem of polynomial

boundedness to be decidable for a “core” imperative language LBJK with a bounded

loop command. The language only handled numeric variables, with the basic oper-

ations of addition and multiplication.

Figure 1 shows the syntax of the language; its semantics is almost self-

explanatory, and will be further explained below. Figure 2 illustrates the analysis

problem we shall focus on: deciding whether all values computed by a program are

polynomially bounded.

An important aspect of the language LBJK was the inclusion of non-deterministic

commands: in particular, the if command has no conditional and is interpreted as a

non-deterministic choice; the loop may (non-deterministically) exit before the loop

count is exhausted; we also considered a non-deterministic kind of assignment.

The initial reason for introducing non-determinism was the expectation that if

deterministic conditional branching was included, the language would defy a de-

cision procedure; so we followed the conservative approach often used in program

analysis, treating both branches as possible. This decision meant that our language

could be used to model concrete programs by over-approximating their semantics.

Having made this choice, we realized that additional non-deterministic constructs

may be useful as over-approximations of concrete ones. Our bounded loops (like

Pascal for loops), that allow a non-deterministic premature exit, capture programs

that actually employ while loops (as long as an iteration bound can be given), and

programs that use an early exit mechanism (like the C command break).
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Program 1:

loop X5 {

if ? then { X3 := X1; X4 := X2 }

else { X3 := X2; X4 := X1 };

X1 := X3 + X4;

}

Program 2:

loop X4 {

X2 := X1;

X3 := X2;

X1 := X3 + X2;

}

Fig. 2. In the first program, all variables are polynomially bounded, while in the second, exponential

growth occurs.

As in this paper we contrast the two kinds of bounded loops, we employ the

notation !loop for the definite type (which cannot exit early), and ?loop for the

indefinite type (which can).

The non-deterministic assignment (“lossy assignment”) is another feature that

could be used to represent (again, by over-approximation) concrete programs in

richer languages. The lossy assignment statement X :≤ Y sets variable X to some

non-negative integera bounded by Y. Thus, it is not really an assignment, but a

constraint. Constraints are widely used in program analysis to represent sound

over-approximations of program semantics.

1.2. Problems Left Open and New Results

One of the insights we gained regarding our work in [3], was that the key to success

is the property of monotonicity.

Firstly, all the functions computed by the arithmetic operators we admitted

(addition and multiplication) are monotone. Indeed, if we extend the language with

subtraction of integers, decidability is lost, which should come as no surprise.

Secondly, monotonicity is also necessary in the semantics of commands. While

for the if command and sequential composition, a suitable notion of monotonicity

can be easily established, the loop command is more difficult. We found that definite

loop semantics destroys monotonicity: a second iteration may erase the result of the

first, so that increasing the iteration count does not increase the output. Our non-

aFor simplicity, we restrict all data in this paper to non-negative integers. The positive results

that we cite from [3, 2] are actually applicable to richer data types.
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deterministic loop semantics restores monotonicity since increasing the loop variable

only makes more outcomes possible.

Another limitation of our analysis [3] was that we could not handle constants,

for instance the command X:=0.

The reader may feel that the problem is less severe if 0 is the only constant

allowed, and this is indeed the case. In [2], LBJK is extended with the constant 0

and decidability is shown. Extending the language with the constants 0 and 1 yields

a variant whose analysis remains an open problem.

In this paper, we focus on the difficulty caused by the definite loop. For a lan-

guage with precise addition and assignments, and the constants 0 and 1, including

!loop leads to undecidability: The language can actually compute all primitive

recursive functions, and the impossibility of deciding various properties in such a

language is well known. We are thus interested in weakening the language, to find

the edge of decidability. First, we consider lossy assignments. This kind of assign-

ment statement sets the variable on the left-hand side non-deterministically to a

value between 0 and the value on the right-hand side. This seems to take the edge off

!loop. Surprisingly, we found that undecidability still holds. Furthermore we can

(with both standard and lossy assignment) eliminate the constants. This culminates

in a proof that a language with !loop and a single form of assignment statement,

either X := Y+Z or X :≤ Y+Z, suffices to make complexity analysis undecidable.

These proofs are given in Section 3. In Section 4, we go back to the decidable

side of the line, by considering the max assignment. The semantics of X :
max
= exp is

to set X to the value of exp if this increases X; otherwise, X keeps its current value.

We prove that under this assignment semantics, the language with !loop can be

analyzed precisely (we consider the variant that has expressions Y+Z as well as the

constant 0). This agrees very well with the intuition presented earlier, since the

semantics of max assignments makes the sequence of computed values monotone.

Like the “trick” of super-approximating program semantics by introducing non-

determinism, the max assignment can also be found in the practice of program

analysis, where the analysis often relies on program invariants. To derive invariants

from the program semantics one goes through what is often called a collecting

semantics [6] where the “value” of a variable becomes the set of all values it assumes

throughout the computation. Thus, as assignment becomes an addition to the set.

The set itself is further abstracted to a simpler structure, a classic example being

intervals [4, 5]. The assignment X :
max
= exp can be viewed as an instruction updating

the limit of the interval.

1.3. Related Work

The idea of studying programs based on a restricted type of loops, in order to make

the complexity analysis problem more accessible—and even precisely decidable—

goes back to the seminal paper of Meyer and Ritchie [17]. Their class of loop pro-

grams only has bounded loops and a static upper bound on their complexity can be
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computed. While these upper bounds are tight for the class of programs as a whole,

many programs of the class have a lower complexity, so we can try to analyze a given

program more precisely. Works of this kind include [11, 1, 14, 18, 10]. With a single

exception, these works proposed syntactic criteria, or analysis algorithms, that are

sufficient for ensuring that the program lies in a desired class (say, polynomial-time

programs), but are not both necessary and sufficient: thus, they do not address

the decidability question (the exception is [14] which has a decidability result for a

“core” language).

A key notion in the study of loop programs, starting with [17, 11], is the nest-

ing depth of loops . Programs of nesting depth 2, called LOOP(2) programs, can

compute all the Kalmar-elementary functions, which makes them powerful enough

to defy decidability for many properties of interest. A prototypical example is the

equivalence of two programs. However, as shown by Tsichritzis [21], this problem

(and others) are decidable if loops are unnested (LOOP(1) programs)b. We remark

that, as such programs are always polynomial-time and feasible, the questions we

study are trivial in such a restricted class. The analysis of LOOP(1) programs

becomes more challenging as one expands the set of basic (non-looping) instruc-

tions, and several authors have studied decision problems (like equivalence) and

the computational power of such programs [12, 7, 8, 9]. These works pointed out the

connection of these programs to counter machines, and in this context it is interest-

ing to note some similarity between our lossy assignments and the so-called lossy

counters [15].

As previously mentioned, [3, 2] are the nearest ancestors of this work. To our

best knowledge, the specific decidability questions studied in the current paper have

not been studied before.

2. Basic Definitions

We will deal with languages that differ from LBJK in certain respects. On one hand,

we exclude nested expressions, the skip command and the if command; after all,

we are going to prove a negative result, so we are interested in minimal fragments

that suffice. On the other hand, we included the constants 0 and 1 (in the form of

the reset instruction X:=0 and the increment X:=Y+1).

Definition 1. We will work with fragments and variants of the language whose

syntax is given in Figure 3. Programs in this language manipulate non-negative

integers according to the standard semantics expected from the syntax. The following

“cleanliness” restrictions are imposed on the syntax:

• in !loop X {C}, the variable X is not allowed to be assigned to within C

• in X:=Y, X:=Y+Z and X:=Y+1, the variables on the right-hand side are dis-

tinct from the left-hand side variable.

bThe proof is exhibited among the Gems of Theoretical Computer Science [20].



February 1, 2013 12:8 WSPC/INSTRUCTION FILE undecidableR2

6 Amir M. Ben-Amram and Lars Kristiansen

X, Y, Z ∈ Variable ::= X1 | X2 | X3 | . . . | Xn
C ∈ Command ::= X:=Y | X:=Y+Z | X:=0 | X:=Y+1

| C1;C2 | !loop X {C}

Fig. 3. Syntax of a language we consider.

We denote subsets of the language in Figure 3 by the letter L followed by a list

of the right-hand sides of assignment commands. Hence, the full language shown is

L[Y, Y+Z, 0, Y+1]; and L[Y, Y+Z, 0] is the language shown without assignment of the

form X := Y+1; and so on.

We study three variants of the assignment command:

• The standard assignment: X := exp. This command sets X to the value of

exp.

• The lossy assignment: X :≤ exp. This command sets X to a non-

deterministically chosen value that is less than or equal to exp.

• The max assignment: X :
max
= exp. This command sets X to the value of exp

if this increases X; otherwise, X keeps its current value.

We use L≤[. . . ] and Lmax[. . . ] to denote the variants of the language L[. . . ] that

use, respectively, lossy assignments and max assignments in place of standard as-

signments.

Let p be a program over the variables X1, . . . , Xn, and let x1, . . . , xn be the values

of respectively X1, . . . , Xn when an execution of p starts. The program p is feasible

if there exists a polynomial p such that p(x1, . . . , xn) bounds any value computed

during the execution. We define the feasibility problem for the language L by

• input: an L-program p; question: is p feasible?

We proved in [3] that the feasibility problem for LBJK is decidable in polynomial

time. In [2], we proved that the feasibility problem for LBJK still is decidable when

LBJK is extended with the constant 0, moreover, we proved that this problem is

PSPACE complete. We also argued that these decidability results hold for a few

close variants of the feasibility problem:

• The polynomial-bound problem where the question is whether the value of

a designated output variable upon program termination is polynomially

bounded in the inputs.

• The polynomial step-count problem where the question is whether the num-

ber of primitive steps in the execution of the program is polynomially

bounded in the inputs.

The decidability and undecidability results of the current paper do also apply to

these variants, but we leave the proofs to the interested reader.
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3. Undecidability Results

The next theorem should be well known, but we include a brief proof for the reader’s

convenience.

Theorem 2. The feasibility problem for L[Y, 0, Y+1] is undecidable.

Proof. First we note that we indeed can subtract in this language. The following

program sets Y to the the value of X minus 1 (when X is strictly greater than 0).

Y:= 0; Z:= 0; !loop X { Y:= Z; Z:= Y+1 }

Hence, it should be obvious that the language is strong enough to compute any

primitive recursive function.

Assume some standard enumeration of Turing machines taking no input, and

let T (e, s) be the predicate that holds if and only if the e’th Turing machine halts

within log2 s stepsc. This primitive recursive predicate is of low complexity and can

be decided by a feasible L[Y, 0, Y+1]-program. Let pe be the L[Y, 0, Y+1]-program

given by the informal code

if T (e, X) then compute 2X else do nothing .

Now, pe is feasible if and only if the e’th Turing machine does not halt. This proves

that the halting problem for Turing machines is reducible to the feasibility problem

for L[Y, 0, Y+1], and thus, this feasibility problem is undecidable.

Now, what happens if the programs apply lossy assignments in place of standard

assignments? It turns out the feasibility problem is still undecidable, as we show in

the next theorem.

Definition 3. Let H be a variable not occurring in the program p. We use H(p) to

denote the program p where each assignment X :≤ exp is replaced by !loop H { X :≤
exp }.

Observe that all our assignment commands are idempotent, that is, repeating them

several times does not change their effect. Thus, the program H(p) computes the

same values as p does if the initial value of H is nonzero. If the initial value of H is zero,

the program will execute without changing the value of any variable. Moreover, if we

insert an assignment into H(p) that sets H to 0, the program will be inhibited from

computing any larger values from the moment where this assignments is executed.

To prove undecidability in weaker and weaker languages, we introduce macros,

that is, pieces of code in the weaker language that simulate (in some sense) the

missing commands. We use this technique to deal with the limitation of lossy as-

signments.

cThis is essentially the predicate T defined by Kleene in Sect. 42 of [13], the definition adjusted

to ensure polynomial complexity.
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Definition 4. The macro X :≤ Y-1 stands for

X:≤0; Z:≤0; !loop Y { X:≤Z; Z:≤X+1 }

where Z is a fresh variable (that can be shared by all invocations of the macro). The

macro X :≤ X-1 stands for

Z:≤X-1; X:≤Z

where Z is a fresh variable (that can be shared by all invocations of the macro).

Lemma 5. The effect of the macro X :≤ Y-1 is to set X to a value less than or

equal to Y− 1 (and, importantly, equality is possible).

Definition 6. The macro X:=Y+1 stands for

X:≤Y+1; Z:≤X; !loop Y { Z:≤Z-1 }; H:≤Z

where Z is a fresh variable (that can be shared by all invocations of the macro).

Lemma 7. The effect of the macro X:=Y+1 is to set X to a value that is at most

Y + 1 (any value less than or equal to Y + 1 is possible). Moreover, the macro also

sets H to a value. This new value of H can be nonzero only if the new value of X is

precisely Y + 1.

The reader may now see how the macro X:=Y+1 interacts with the transformation

H. If the macro fails to compute Y + 1 precisely, it sets H to zero, and thereby,

inhibits the program.

Definition 8. The macro X:=Y stands for

X:≤Y; Z:≤X; !loop Y { H:≤Z; Z:≤H-1 }

where Z is a fresh variable (that can be shared by all invocations of the macro).

Lemma 9. The effect of the macro X:=Y is to set X to a value that is at most Y

(any value less than or equal to Y is possible). Moreover, the macro also sets H to a

value. This new value of H can be nonzero only if the new value of X is precisely Y.

Theorem 10. Feasibility is undecidable for L≤[Y, 0, Y+1].

Proof. By reduction from feasibility for L[Y, 0, Y+1]. Given a program p in

L[Y, 0, Y+1], we form H(p), and then, we go on to replace all assignments by the

corresponding macros, that either simulate them precisely or inhibit the rest of

the computation from producing any larger values. The result is an L≤[Y, 0, Y+1]-

program that is feasible if and only if p is feasible.

Next, we will prove that the feasibility problem for programs with definite loops

and lossy assignments remains infeasible when the constants 0 and 1 are removed

from the language.
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Theorem 11. Feasibility is undecidable for L≤[Y, Y+Z, 0].

Proof. We have proved that the feasibility problem for L≤[Y, 0, Y+1] is undecidable.

Thus, the the feasibility problem for L≤[Y, Y+Z, 0, Y+1] will also be undecidable. We

will reduce the feasibility problem for L≤[Y, Y+Z, 0, Y+1] to the the feasibility problem

for L≤[Y, Y+Z, 0].

Let p be a L≤[Y, Y+Z, 0, Y+1]-program, and let K1 be a fresh variable. The pream-

ble

pre ≡ H:≤0; !loop K1 { H:≤ Z; Z:≤0 }

will inhibit the program H(p), unless the initial value of K1 is 1 and the initial value

of Z is nonzero. This allows us to simulate the command X :≤ Y+1 by X :≤ Y+K1.

Hence, let p′ be p where each assignment X :≤ Y+1 is replaced by X :≤ Y+K1, and let

q ≡ pre;H(p′). Now, if the initial value of K1 should be different from 1, or if initial

value of Z should be 0, then the values computed by q will obviously be bounded by

polynomials in the inputs; otherwise, for any variable X occurring p, the program q

will compute the same values into X as p does. Hence, q is an L≤[Y, Y+Z, 0]-program

that is feasible if and only if p is feasible.

Next, we we eliminate the constant 0, and thereby reduce the number of expression

forms in assignments to one.

Theorem 12. Feasibility is undecidable for L≤[Y+Z].

Proof. We reduce from the feasibility problem for L≤[Y, Y+Z, 0]. Given p in the

latter language, pick a fresh variable K0, and replace each assignment X :≤ 0 by

X :≤ K0+K0 and each assignment X :≤ Y by X :≤ Y+K0. If the initial value of K0 is

zero, this preserves the effect of the program, and reduces the language to L≤[Y+Z].

Now, as K0 can take any initial value, we modify the program further by replacing

any command X :≤ Y+Z by

X:≤Y+Z; !loop K0 { X:≤ K0+K0 } .

This preserves the effect of the program if the initial value of K0 is zero, while if

the initial value of K0 is nonzero, any value computed during an execution will be

bounded by 2(x1 + . . . + xn) where x1, . . . , xn are the inputs.

This proves that for any L≤[Y, Y+Z, 0]-program p we can construct an L≤[Y+Z]-

program q such that q is feasible if and only if p is feasible.

The reductions in the proofs of Theorem 11 and 12 work equally well with exact

assignments. Hence, we also have

Theorem 13. Feasibility is undecidable for L[Y+Z].
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4. Decidability with Max Assignments

It turns out that the feasibility problems that we proved undecidable in the previous

section become decidable if the programs apply max assignments in place of lossy

assignments.

Let ?L[. . . ] denote the language L[. . .] equipped with indefinite loops in place

of definite loops. The language ?L[Y, Y+Z] is a sub-language of LBJK, and it follows

from the results in [3] that the feasibility problem for ?L[Y, Y+Z] is decidable. We

will prove that the feasibility problem for Lmax[Y, Y+Z, 0] is decidable by reduction

to the feasibility problem for ?L[Y, Y+Z].

Definition 14. Let A(p) denote the ?Lmax[Y, Y+Z]-program we obtain when each

assignment X :
max
= 0 in the Lmax[Y, Y+Z, 0]-program p is replaced by the assignment

X :
max
= X.

The next lemma is obvious.

Lemma 15. Let p be any Lmax[Y, Y+Z, 0]-program. Then, p is feasible if and only

if A(p) is feasible.

Definition 16. Let ?(p) denote the ?Lmax[Y, Y+Z]-program we obtain when each

definite loop !loop X {....} in the Lmax[Y, Y+Z]-program p is replaced by an in-

definite loop ?loop X {....}.

Lemma 17. Let p be any Lmax[Y, Y+Z]-program. Then, p is feasible if and only if

?(p) is feasible.

Proof. An execution of the deterministic program p corresponds to a particular

execution of the non-deterministic program ?(p). Hence, p is feasible if ?(p) is.

Now, assume that p is feasible. Let A = p1, p2, . . . , p` be the sequence of assign-

ment statements performed when p is executed on some inputs x1, . . . , xn. When

?(p) is executed, a loop ?loop Z [...] will be executed at most Z times, in con-

trast to exactly Z times in p. Let A? = p?1, . . . , p
?
k be the sequence of assignment

statements performed when ?(p) is executed on the same inputs x1, . . . , xn. We

claim that the statements A? form a subsequence of A. Further, we claim that the

values of variables after any prefix of A? are bounded by the values of the respective

variables after a corresponding prefix of A. This is easy to prove by induction on

the length of the prefix, based on the fact that variables cannot be decreased. We

conclude that ?(p) is feasible if p is feasible.

Definition 18. Let p be a ?Lmax[Y, Y+Z]-program, and let W be a fresh variable. We

use C(p) to denote the ?L[Y, Y+Z]-program we obtain when each assignment X :
max
= exp

in p is replaced by ?loop W { X := exp }.

Note that the command ?loop W { X := exp } either performs no assignments,

or performs the assignment X := exp a number of times. Thus, as our standard
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assignment commands are idempotent, we can without loss of generality assume

the that program either does nothing, or performs the assignment X := exp exactly

once.

Lemma 19. Let p be any ?Lmax[Y, Y+Z]-program. Then, p is feasible if and only if

C(p) is feasible.

Proof. Any execution of p corresponds to a particular execution of C(p), namely

the execution that does nothing whenever the execution of p performs X :
max
= exp and

X ≥ exp; and performs X := exp whenever the execution of p performs X :
max
= exp

and X < exp. Hence, C(p) is infeasible if p is infeasible.

Now, assume that p is feasible. Let C = pc1, . . . , p
c
` be the sequence of assignment

statements performed in a certain computation of C(p) with some inputs x1, . . . , xn.

We claim that there is a computation of p on the same inputs x1, . . . , xn that

performs a sequence of assignments A = p1, . . . , pk, such that the sequence C forms

a subsequence of A. Further, we claim that the values of variables after any prefix of

C are bounded by the values of the respective variables after a corresponding prefix of

A. This is easy to prove by induction on the length of the prefix, noting the following

cases regarding the command ?loop W { X := exp }: (1) no assignment takes place;

in p, a corresponding assignment is performed, which might only increase the value

of X, maintaining the invariant. (2) An assignment takes place: a corresponding

assignment would be performed by p. There may be a difference in the result, but

the invariant will be maintained, because the X :
max
= exp command, performed in p,

can only result in a value at least as big as the one assigned to X in C(p).

Since there are polynomials bounding the values computed by p in terms of the

input, we deduce that the same polynomials bound the results of C(p), which is

therefore feasible.

Theorem 20. The feasibility problem for Lmax[Y, Y+Z, 0] is decidable. Moreover,

the problem is in PTIME.

Proof. Let p be an Lmax[Y, Y+Z, 0]-program. By the preceding lemmas, p is fea-

sible if and only if the program C(?(A(p))) is feasible. Moreover, C(?(A(p))) is a

?L[Y, Y+Z]-program and the feasibility problem for ?L[Y, Y+Z] is decidable.

The feasibility problem for ?L[Y, Y+Z] is in PTIME [3]. The program C(?(A(p)))

can obviously be constructed from p by a Turing machine working in polynomial

time. Hence, the feasibility problem for Lmax[Y, Y+Z, 0] is also in PTIME.

We conjecture that the feasibility problem for Lmax[Y, Y+Z, 0, Y+1] is decidable as

well. Let LBJK ∪ {0, Y+1} denote the language LBJK extended with assignments of

the forms X := 0 and X := Y+1. We do not know if the decidability problem

for LBJK ∪ {0, Y+1} is decidable. But if it is, that would imply decidability of the

feasibility problem for Lmax[Y, Y+Z, 0, 1] by a reduction alike the one shown earlier.
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However, the feasibility problem for LBJK ∪ {0, Y+1} seems to be significantly more

difficult then the feasibility problem for Lmax[Y, Y+Z, 0, 1].

5. Open Problems

Definition 21. Let p be a program over the variables X1, . . . , Xn, and let x1, . . . , xn

be the values of respectively X1, . . . , Xn when an execution of p starts. The program

p is feasible almost always (a.a.) if there exist a polynomial p and k ∈ N such that

p(x1, . . . , xn) bounds any value computed during the execution when x1, . . . , xn > k.

We define the feasibility almost always (a.a.) problem for L by

• input: an L-program p; question: is p feasible (a.a.)?

A feasible program will also be feasible (a.a.), but there exists infeasible programs

that are feasible (a.a.), e.g. the program given by the informal code

!loop Z { X := 0 } ; !loop X { compute 2Y } .

Our proof of undecidability of the feasibility problem for L[Y+Z] depends on the

behaviour of programs when certain inputs are small, specifically, when certain

inputs are 0 or 1. Thus, this proof will not work for feasibility (a.a.). Neither will it

work for the variant of feasibility given in the next definition.

Definition 22. Let p be a program over the variables X, Y1, . . . , Yn, and let

x, 0, 0, . . . , 0 be the values of respectively X, Y1, . . . , Yn when the execution of p starts.

The program p is feasible with single input (w.s.i.) if there exist a polynomial p such

that p(x) bounds any value computed during the execution. We define the feasibility

with single input (w.s.i.) problem for L by

• input: an L-program p; question: is p feasible (w.s.i.)?

It is easy to see that the (a.a.) variant and the (w.s.i.) variant of the feasibility

problem for L[Y, Y+1, 0] are undecidable. (The program pe constructed in the proof

of Theorem 2 is feasible (a.a.) if and only if the e’th Turing machine does not halt.

Moreover, the same program pe is feasible if and only if the e’th Turing machine

does not halt, even when all variables, except a particular one, are initiated to 0.)

However, we think that the feasibility (a.a.) problem, or the feasibility (w.s.i.) prob-

lem, or both problems, might be decidable for the language L[Y, Y+Z, 0]. But this is

a conjecture, and of course, if any of these two problems should turn out to be un-

decidable, the proof for this has to be very different from the proof of undecidability

of the feasibility problem for L[Y+Z]. Thus, we pose two open problems:

• Is the feasibility (a.a.) problem for L[Y, Y+Z, 0] decidable?

• Is the feasibility (w.s.i.) problem for L[Y, Y+Z, 0] decidable?

We remark that both problems indeed are undecidable for L≤[Y+Z]. The reason is

that we can use lossy assignments to generate small values. The proofs in Section
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3 works equally well if, e.g., the dedicated variable K1 receives the critical value 1

from a lossy assignment K1 :≤ X, in stead of receiving this value as an input.

The feasibility (w.s.i.) problem for Lmax[Y+Z, 0] is decidable as it can be reduced

to the feasibility problem for LBJK extended with the constant 0—a problem proven

to be decidable in [2]. We conjecture that the feasibility (w.s.i.) and feasibility (a.a.)

problems for Lmax[Y+Z, 0, 1] are decidable as well.

6. Conclusion

The next table summarizes our results on decidability of the feasibility problem for

various kinds of loop programs. The parameters are: type of loop and assignment

constructs, and which constants are allowed. In the decidable cases, a multiplication

X:=Y*Z can also be included [3, 2].

expressions: X+Y X+Y,0 X+Y,0, Y+1

indefinite loops PTIME [3] PSPACE [2] ?

all types of

assignments

definite loops PTIME PTIME ?

max assignments

definite loops undecidable undecidable undecidable

lossy/standard assignment

To this we can add the (mostly open) problems regarding feasibility almost

always or with a single input, as described in Section 5.
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