
A Simple and Efficient Union-Find-Delete

Algorithm

Amir Ben-Amram∗ Simon Yoffe∗

September 5, 2010

Abstract

The Union-Find data structure for maintaning disjoint sets is one
of the best known and widespread data structures, in particular the
version with constant-time Union and efficient Find. Recently, the
question of how to handle deletions from the structure in an efficient
manner has been taken up, first by Kaplan, Shafrir and Tarjan (2002)
and subsequently by Alstrup et al. (2005). The latter work shows that
it is possible to implement deletions in constant time, without affecting
adversely the asymptotic complexity of other operations, even when
this complexity is calculated as a function of the current size of the
set.

In this note we present a conceptual and technical simplification of
the algorithm, which has the same theoretical efficiency, and is proba-
bly more attractive in practice.

Keywords: Data structures, Disjoint sets, Union-Find

1 Introduction

A union-find data structure maintains a collection of disjoint sets under the
operations:

• makeset(a) - generates a singleton set including the new element a.

• union(A,B) - takes two sets A, B and unites them, destroying the
two original sets.

• find(a) - takes an element a and returns an identifier of the set cur-
rently containing it (depending on the programming idiom, a reference
to the set could be returned).

∗Tel-Aviv Yaffo Academic College, PO Box 8401, 61083 Jaffa, Israel; email:
amirben@mta.ac.il (corresponding author), simon.yoffe@gmail.com

1

The classic data structure for the Union-Find problem represents each
set A as a rooted tree TA which contains only parent links, and each element
in A as a node of TA. The Union operation links the root of the shallower
tree to the root of the taller tree (so the height will be increased only in a case
of trees of equal height) in O(1) time. The Find operation climbs from the
provided element up to the root and returns the root node as an identifier of
the set. For the sake of efficiency, it also performs path compression, which
is to link all the nodes in the path directly to the root (reducing the cost of
subsequent Finds). The Find operation costs O(log(n)) worst-case time and
O(α(n)) amortized time where n is the number of nodes in the set returned
by the Find operation and α(n) is the inverse-Ackermann function [4, 1].

Terminology: the height of a node v ∈ T , denoted by h(v), is defined
to be 0 if v is a leaf, and max{h(w)|w is child of v} + 1, otherwise. For a
tree T let root(T) denote the root of T and for a set A, let root(A) denote
the root of TA. The height of a tree is the height of its root. For any node
v ∈ T , let p(v) denote the parent of node v; if v is a root, p(v) = v. Each
node v ∈ T is assigned an integer rank, denoted by rank(v). The rank of a
tree is defined to be the rank of the root of the tree and the rank of a set is
defined to be the rank of the tree representing the set. By default, log will
mean log2. The classic algorithm has the following invariant:

Invariant 1. The parent of a node always has a strictly higher rank than
the node itself.

The Union operation is actually done by rank (rather than height; this is
not the same because of path compression). Since ranks are strictly increas-
ing when following parent pointers, the time of a Find operation applied to
an element in a set A is clearly proportional to the tree height, bounded by
rank(A). The fact that rank(A) ≤ log |A| implies the O(log(n)) worst-case
time of the Find operation, and together with the path compression during
Find implies the O(α(n)) amortized time [4, 1].

Our goal is to implement a Delete operation in O(1) time and keep
an O(N) space complexity for the whole data structure, where N is the
number of elements currently maintained by the data structure. Note that
the bounds on the cost of Find are in terms of the size of the set returned,
while a Delete operation decreases the number of elements in the set;
thus, maintaining these time bounds means that a Delete operation should
make subsequent Find operations faster while decreasing the size of the data
structure.

The inclusion of the delete operation in the Union-Find structure has
been studied by Kaplan, Shafrir and Tarjan [2] and later by Alstrup et
al. [1] who improved the efficiency of Delete operation to constant time
while maintaining worst case, amortized time and space bounds as above.

In [2] the motivation for including a Delete operation in the data struc-
ture was implementing meldable priority queues. Another application is im-

2

plementing an operation which moves an element to a new set. This has
been used in work on ownership transfer in object-oriented systems [3].

We present a Union-Find-Delete algorithm which we derived by a sim-
plification of the solution of Alstrup et al. [1]. We removed the use of vacant
nodes and the tidying up operations. We replaced the complicated local
compress procedure with a much simpler one; not only is this advantageous
in practical terms, it also made the analysis much simpler. Even the asymp-
totic bounds were slightly improved. While our work relies on [1], the reader
need not be familiar with their algorithm for following this note.

As by-product, we show how to support an operation that given a node,
returns an arbitrary leaf in the same tree, in O(1) worst-case time.

2 The algorithm

To support a Delete operation in O(1) time, we extend the data structure
as follows.

1. For each node which is not a leaf we maintain a doubly-linked list
Clist of its children. We consider the children to be ordered, accord-
ing to this list, from right to left.

2. For the root we maintain a doubly-linked list NLlist of the children
that are not leaves.

3. For each tree we maintain a cyclic doubly-linked list DFSlist of the
tree nodes in DFS order starting from the root and proceeding from
the rightmost child towards the left.

4. The data structure will be extrinsic. This means that each element
is distinguished from the tree node with which it is associated. Each
element object is doubly-linked to a tree node (in previous work, there
was no distinction between a tree node and an element. This change
helps us to avoid vacant nodes). Objects of type node hold next/prev
pointers of all the associated lists. So by providing a pointer to a node
we can easily perform local operations on the lists.

Definition 2.1. A tree is said to be reduced if it is either

• A tree composed of a single node of rank 0, or

• A tree of height 1 with a root of rank 1 and leaves of rank 0.

Definition 2.2. A tree is said to be full if each of its nodes is either

• A leaf of rank 0, or

• A parent with at least three children. The parent’s rank is strictly
higher than all of the ranks of its children.

3

The fact that each non-leaf node has at least three children will be used
in proving the bound on the rank of a root. For implementing the Delete
operation in O(1) worst-case time, without preserving the bounds on the
other operations, having two children would suffice. We introduce an addi-
tional invariant:

Invariant 2. A tree is either full, or reduced.

Consequently, all trees of size ≥ 4 are full, while trees of size < 4 have
to be reduced.

We next show the implementation of the Makeset, Union, Find and
Delete operations over the extended data structure. Recall that our goal
is to maintain the following efficiency: Makeset and Union operations in
O(1) time, Find in O(log(n)) worst-case time and O(α(n)) amortized time
where n is the number of elements in the returned set, and Delete in O(1)
time.

2.1 Implementation of the Makeset operation

Makeset(a):

• Create a node x for the element a. Set p(x)← x, rank(x)← 0.

• Create empty NLlist and Clist.

• Create the DFSlist containing x.

Clearly, this can be done in O(1) worst-case time and the invariants hold.

2.2 Implementation of the Union operation

Union(A,B): Recall that A and B are sets. Let TA, TB be the trees of A,
B respectively. If one of the trees is of size < 4 (without loss of generality,
TB), do as follows:

• For every node x in TB : set p(x)← root(TA), rank(x)← 0.

• Set rank(root(TA))← max{rank(root(TA)), 1}.

• Update Clist and DFSlist (straightforward).

It remains to handle trees of size ≥ 4, which are full by Invariant 2. Assume,
without loss of generality, that rank(A) ≥ rank(B), Then:

• Set p(root(B))← root(A), and if rank(A) = rank(B), increase rank(A)
by one.

• Insert root(B) into Clist and NLlist of root(A) (straightforward: we
add it at the beginning of the lists).

4

• Merge the DFSlists of TA and TB (straightforward: we insert the
DFSlist of TB into the DFSlist of TA immediately after root(A)).

• Free the NLlist of root(TB). We assume a garbage collection or a
free-list mechanism to which we can move the list in O(1) time.

Clearly can be done in O(1) worst-case time and the invariants hold.

2.3 Implementation of the Find operation

The classic Find algorithm [4] follows parent pointers from x all the way to
the root while performing path compression: each node in the path is linked
directly to the root.

Tarjan and van Leeuwen [5] presented alternatives to path compression
which achieve the same asymptotic time complexity. The simplest alter-
native is the path splitting process: each node y in the path such that
p(p(y)) 6= p(y) is moved from its parent to its grand-parent. We refer to this
modification as relinking y.

We will use path splitting in our implementation of Find. When a node
is disconnected it may affect the full tree property; to fix that, function
relink(y) checks whether the original p(y) is left with only two offsprings.
In that case, it relinks them as well.

We next implement the relink operation. Note that moving a node x
actually moves the entire subtree rooted at x.

1. Remove x from the Clist of p(x) and insert it in the Clist of p(p(x))
in one of two locations: if x has a left sibling, it is inserted before (to
the right of) p(x); otherwise, after (to the left of) p(x).

2. Update the DFSlist of the tree. This means extracting the DFSlist
of the subtree that starts at node x and inserting it at the new location,
as shown later.

3. If p(x) becomes a leaf, set rank(p(x)) ← 0 and if p(p(x)) is the root,
remove p(x) from the NLlist of the root.

4. If NLlist became empty (this means that the tree is reduced), set
rank(root)← 1.

It remains to show how to update the DFSlist when disconnecting node x:
If x has a left sibling (l), it means that the subtree rooted at x is repre-

sented in the DFSlist by the segment [x, l). It is simple to disconnect the
segment and insert it after p(x) in O(1) time.

If x is the leftmost child of p(x), we do not have to change the DFSlist.
Clearly this relink operation can be done in O(1) worst-case time. Let

us summarize the Find operation.
Find(a):

Let x be the tree node associated with the element a.

5

• While p(x) is not the root, let t← p(x), relink x to p(t), set x← t.

• Return p(x).

In principle, we could also use the familiar path compression technique.
However it requires a more complex algorithm for fixing the DFSlist and
maintaining the invariants, while path splitting is simple and uses the relink
primitive, also used in the implementation of Delete.

2.4 Implementation of the Delete operation

First, we show how to delete a node in a tree of a size ≤ 4, this means that
after the delete the tree should become reduced. To accomplish that we will
rebuild the tree to a reduced tree, which can be achieved in O(1) time due
to the size of the tree.

Next, we consider larger trees. If the tree is reduced, the delete is simple.
Reduced-Tree-Delete(a):

If the element a is associated with a leaf node, simply delete the node.
Otherwise the element a is associated with the root. Let l be a leaf node.
Switch the associations of l and the root to set elements, so that a becomes
associated with the leaf. Finally delete the leaf.

Clearly, the above can be achieved in O(1) time and the tree remains
reduced.

It remains to show how to delete a node in a tree of a size > 4 which
is not reduced, this means that the tree is full (Invariant 2) and after the
Delete operation it should remain full. The idea is to find a leaf node in
O(1) time.
Find-Leaf(a):

Let x be the tree node associated with the element a. If x is a leaf,
we are done, otherwise: If x is the root, we have direct access to the last
member of DFSlist, which is a leaf. If x is not the root, either:

• The node x has a left sibling (l); then the node DFSlist[l].prev is the
leftmost leaf in the subtree of x, or

• The node x has a right sibling r; then the node DFSlist[x].prev is
the leftmost leaf in the subtree of r.

Now, our problem reduces to deletion of a leaf node from a full and
non-reduced tree.
Delete-Leaf(x):

• Update the Clist of p(x), as well as DFSlist, to bypass x.

• Delete the node x.

• If the tree is not reduced, apply Local-Rebuild (below) to y = p(x).

6

The purpose of local rebuilding is to ensure that tree remains balanced after
the Delete operation, as necessary to ensure the efficiency of Find.
Local-Rebuild(y):

• If y is not the root, relink the two leftmost children of y.

• If y is the root, let c be a non-leaf child of y. Relink the three leftmost
children of c. Note that a non-leaf node can be found via the NLlist
of the root, and does exist because the tree is not reduced.

Note that the relink operation preserves the full tree property. All of
the above takes O(1) worst-case time and the invariants are maintained.
Note that ranks are unaffected by Local-Rebuild in general, however if
the tree becomes reduced, the root’s rank is updated; and a sufficiently long
sequence of Deletes must eventually arrive at a reduced tree.

We can now put together the Delete operation.
Delete(a):

Let x be the tree node associated with the element a.

• If the tree that contains x is of size ≤ 4, rebuild as a reduced tree,
else

• If the tree is reduced, call Reduced-Tree-Delete(a), else

• Let l = Find-Leaf(a), switch elements between l and x and call
Delete-Leaf(l).

3 Analysis

The goal of this section is to analyze the worst-case cost of Find in the
presence of deletions. The analysis is a much-simplified version of that
from [1].

Definition 3.1. The value val(v) of a node v is defined as

val(v) = (
3
2

)rank(p(v))

The value of a set A is defined as the sum of the values of all nodes in TA:

V AL(A) =
∑
v∈TA

val(v)

We will show that the Makeset, Union, Find and Delete operations
over our data structure preserve the following invariant:

Invariant 3. V AL(A) ≥ 2rank(A).

7

Since the tree representing a set A contains exactly |A| nodes, each of
value at most (3

2)rank(A) it will follow that

|A|(3
2

)rank(A) ≥ 2rank(A)

|A| ≥ 2rank(A)

(3
2)rank(A)

= (
4
3

)rank(A)

rank(A) ≤ log 4
3
(|A|) = O(log |A|)

As the rank of a tree is always an upper bound on its height, the worst-case
time of the Find operation is O(log |A|).

Lemma 3.2. If the tree representing a set A is reduced, V AL(A) ≥ 2rank(A).

Proof. If TA is of height 0 it implies V AL(A) = (3
2)0 = 1 and 2rank(A) = 1. If

TA is of height 1 it implies V AL(A) ≥ (3
2)1+(3

2)1 = 3 while 2rank(A) = 2.

3.1 Makeset

A Makeset operation creates a reduced tree, so according to Lemma 3.2,
Invariant 3 is preserved.

3.2 Union

A Union operation creates a new set C = union(A,B). There are two
cases. If one of the trees is initially of higher rank (say TA), we link TB to
its root and ranks do not change: we have

V AL(C) > V AL(A) ≥ 2rank(A) = 2rank(C)

where the second inequality uses the invariants assumed for A and B. If the
trees are of equal rank, the root’s rank is increased. We have

V AL(C) > V AL(A)+V AL(B) ≥ 2rank(A)+2rank(B) = 21+rank(A) = 2rank(C).

In both cases, Invariant 3 is preserved.

3.3 Find

A Find operation changes the tree TA. If the tree becomes reduced after
the Find operation then according to Lemma 3.2, Invariant 3 is preserved.
This leaves the case where the tree after the Find operation is not reduced.

Let A′ denote the set representation after the Find operation. We as-
sume that V AL(A) ≥ 2rank(A) and we have to prove that V AL(A′) ≥
2rank(A′). The Find operation changes the tree by relinking nodes. We
will show that Invariant 3 is preserved after each relink operation.

8

The relink operation disconnects node x and connects it to p(p(x)). Let
y = p(x), g = p(y) and k = rank(g) then rank(y) is at most k − 1. When
x is disconnected we loose at most (3

2)k−1 and when x is connected to g
we gain (3

2)k so V AL(A) only increases, while rank(A) does not change
(Find changes the rank only if the tree becomes reduced). This means that
Invariant 3 is preserved.

3.4 Delete operation

A Delete operation changes the tree TA. If the tree becomes reduced
after the Delete operation then according to Lemma 3.2, Invariant 3 is
preserved, so we are left with the case when the tree after the Delete
operation TA′ is not reduced.

We assume that V AL(A) ≥ 2rank(A) and wish to prove that V AL(A′) ≥
2rank(A′). The Delete operation changes the tree by the Delete-Leaf
operation on node x (which includes Local-Rebuild).

If y = p(x) is not the root, let g = p(y) and k = rank(g) then rank(y) ≤
k− 1. The Delete-Leaf operation will delete x and relink two children of
y to g. By deleting and unlinking we lose at most 3(3

2)k−1 and by linking
again we gain 2(3

2)k; the total change is at least

−3(
3
2

)k−1 + 2(
3
2

)k = 0

If y = p(x) is the root, let k = rank(y); then rank(x) ≤ k−1. Let c be a
non-leaf child of y. Then rank(c) ≤ k− 1 and the Delete-Leaf operation
will delete x and relink three children of c to y. By deleting and unlinking
we lose at most (3

2)k + 3(3
2)k−1 and by linking again we gain 3(3

2)k; the total
change is at least

−(
3
2

)k − 3(
3
2

)k−1 + 3(
3
2

)k = 0

Note that Delete-Leaf may relink more nodes for preserving the full
property of the tree, which only increases the value. We have shown that
V AL(A) is not decreasing and rank(A) does not change (Delete changes
the rank only if the tree becomes reduced). Hence, Invariant 3 is preserved.

Lemma 3.3. The data structure satisfies Invariant 3, namely V AL(A) ≥
2rank(A), before and after every operation.

Proof. Induction over the number of operations: Lemma 3.2 is the base case
and the above analysis of the operations constitutes the inductive step.

Corollary 3.4. The height of trees, hence the worst-case time of Find, is
O(log |A|).
Corollary 3.5. Find takes O(α(n)) amortized time.

This follows directly from [1]: in essence, they show that Invariant 3 suf-
fices for deriving the inverse-Ackermann bound for Find with path-splitting.

9

4 Conclusion

Our Union-Find-Delete data structure has asymptotic worst-case and amor-
tized complexity which is similar to those obtained by Alstrup et al. (though
constant factors appear to be smaller). The notable difference is a concep-
tual simplification (no vacant nodes) and the significant simplification of
“local compression”.

We would like to point out the following questions for further research:
1. Are there other applications to finding a leaf fast in the type of dynamic
tree considered here?
2. How can the memory usage be reduced?

References

[1] S. Alstrup, I. L. Gørtz, T. Rauhe, M. Thorup, and U. Zwick. Union-find
with constant time deletions. In Proc. 32nd International Colloquium on
Automata, Languages and Programming (ICALP 2005)., volume 3580 of
Lecture Notes in Computer Science, pages 78–89. Springer-Verlag, July
2005.

[2] Haim Kaplan, Nira Shafrir, and Robert Endre Tarjan. Union-find with
deletions. In SODA, pages 19–28, 2002.

[3] Yoshimi Takano. Implementing uniqueness and ownership transfer in the
universe type system. Master’s thesis, Department of Computer Science,
ETH Zurich, 2007.

[4] R.E. Tarjan. Efficiency of a good but not linear set union algorithm.
Journal of the ACM, 22:215–225, 1975.

[5] Robert E. Tarjan and Jan van Leeuwen. Worst-case analysis of set union
algorithms. Journal of the ACM, 31(2):245–281, 1984.

10

