
A

On the Termination of Integer Loops

Amir M. Ben-Amram, The Academic College of Tel-Aviv Yaffo
Samir Genaim, Complutense University of Madrid
Abu Naser Masud, Technical University of Madrid

In this paper we study the decidability of termination of several variants of simple integer loops, without
branching in the loop body and with affine constraints as the loop guard (and possibly a precondition). We
show that termination of such loops is undecidable in some cases, in particular, when the body of the loop is
expressed by a set of linear inequalities where the coefficients are from Z∪{r} with r an arbitrary irrational;
when the loop is a sequence of instructions, that compute either linear expressions or the step function; and
when the loop body is a piecewise linear deterministic update with two pieces. The undecidability result
is proven by a reduction from counter programs, whose termination is known to be undecidable. For the
common case of integer linear-constraint loops with rational coefficients we have not succeeded in proving
either decidability or undecidability of termination, but we show that a Petri net can be simulated with such
a loop; this implies some interesting lower bounds. For example, termination for a partially-specified input
is at least EXPSPACE-hard.

Categories and Subject Descriptors: F.2.0 [Analysis of Algorithms and Problem Complexity]: General;
F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs; F.4.1
[Mathematical Logic]: Computability theory

General Terms: Verification, Theory.

Additional Key Words and Phrases: Integer loops, Termination, Linear constraints.

ACM Reference Format:
ACM Trans. Program. Lang. Syst. V, N, Article A (January YYYY), 23 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Termination analysis has received a considerable attention for at least two decades,
and nowadays several powerful tools for the automatic termination analysis of dif-
ferent programming languages and computational models exist [Lindenstrauss et al.
1997; Giesl et al. 2004; Cook et al. 2006; Albert et al. 2007; Spoto et al. 2010; Giesl
et al. 2011]. Two important aspects of termination analysis tools are their scalabil-
ity and their ability to handle a large class of programs. The theoretical limits of the
underlying techniques, regarding, respectively, complexity and completeness, directly
affect these two aspects. Since termination of general programs is undecidable, every
attempt at solving it in practice will have at its core certain restricted problems, or

This work is an extended and revised version of [Ben-Amram et al. 2012]. Part of this work was done while
Amir Ben-Amram was visiting DIKU, the department of Computer Science at the University of Copenhagen.
Work of Samir Genaim and Abu Naser Masud was funded in part by the Information & Communication
Technologies program of the EC, Future and Emerging Technologies (FET), under the ICT-231620 HATS
project, by the Spanish Ministry of Science and Innovation (MICINN) under the TIN-2008-05624 DOVES
project, the UCM-BSCH-GR35/10-A-910502 GPD Research Group and by the Madrid Regional Government
under the S2009TIC-1465 PROMETIDOS-CM project.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0164-0925/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Ben-Amram et al.

classes of programs, that the algorithm designer targets. To understand the theoreti-
cal limits of an approach, we are looking for the decidability and complexity properties
of these restricted problems. Note that understanding the boundaries set by inher-
ent undecidability or intractability of problems yields more profound information than
evaluating the performance of one particular algorithm.

Much of the recent development in termination analysis has benefited from tech-
niques that deal with one simple loop at a time, where a simple loop is specified by
(optionally) some initial conditions, a loop guard, and a “loop body” of a very restricted
form. Very often, the state of the program during the loop is represented by a finite
set of scalar variables (this simplification may be the result of an abstraction, such
as size abstraction of structured data [Lindenstrauss and Sagiv 1997; Lee et al. 2001;
Bruynooghe et al. 2007; Spoto et al. 2010]).

Regarding the representation of the loop body, the most natural one is, perhaps,
a block of straight-line code, namely a sequence of assignment statements, as in the
following example:

while X > 0 do {X := X + Y ; Y := Y − 1; } (1)

To define a restricted problem for theoretical study, one just has to state the types of
loop conditions and assignments that are admitted.

By symbolically evaluating the sequence of assignments, a straight-line loop body
may be put into the simple form of a simultaneous deterministic update, namely loops
of the form

while C do 〈x1, . . . , xn〉 := f(〈x1, . . . , xn〉) (2)

where f is a function of some restricted class. For function classes that are sufficiently
simple to analyze, one can hope that termination of such loops would be decidable; in
fact, the main motivation for this paper has been the remarkable results by Tiwari
[2004] and Braverman [2006] on the termination of linear loops, a kind of loops where
the update function f is linear. The loop conditions in these works are conjunctions of
linear inequalities. Specifically, Tiwari proved that the termination problem is decid-
able for loops of the following form:

while (B~x >~b) do ~x := A~x+ ~c (3)

where the arithmetic is done over the reals; thus the variable vector ~x has values in
Rn, and the constant matrices in the loop are B ∈ Rm×n, A ∈ Rn×n, ~b ∈ Rm and ~c ∈ Rn.

Subsequently, Braverman proved decidability of termination of loops of the following
form:

while (Bs~x >~bs) ∧ (Bw~x ≥ ~bw) do ~x := A~x+ ~c (4)

where the constant matrices and vectors are rational, and the variables are of either
real or rational type; moreover, in the homogeneous case (~bs,~bw,~c = 0) he proved decid-
ability when the variables range over Z. This is a significant and non-trivial addition,
since algorithmic methods that work for the reals often fail to extend to the integers
(a notorious example is finding the roots of polynomials; while decidable over the re-
als, over the integers, it is the undecidable Hilbert 10th problem1). Regarding the loop
form (4), we note that the constant vector ~c may be assumed to be zero with no loss of
generality, since variables can be used instead, and constrained by the loop guard to
have the desired (constant) values. Over the integers it is also sufficient to have only
≥ or only > in the loop guard. However, replacing > by ≥ (or vice versa) alters the

1Over the rationals, the problem is still open, according to Matiyasevich [2000].

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

On the Termination of Integer Loops A:3

homogeneous loop to a non-homogeneous one, which is why including both inequality
types is important in the context of Braverman [2006].

Going back to program analysis, we note that it is typical in this field to assume
that some degree of approximation is necessary in order to express the effect of the
loop body by linear arithmetics alone. Hence, rather than loops with a linear update
as above, one defines the representation of a loop body to be a set of constraints (again,
usually linear). The general form of such a loop is

while (B~x ≥ ~b) do A
(
~x
~x′

)
≤ ~c (5)

where the loop body is interpreted as expressing a relation between the new values ~x′
and the previous values ~x. Thus, in general, this representation is a non-deterministic
kind of program and may over-approximate the semantics of the source program an-
alyzed. But this is a form which lends itself naturally to analysis methods based on
linear programming techniques, and there has been a series of publications on prov-
ing termination of such loops [Sohn and Gelder 1991; Podelski and Rybalchenko 2004;
Mesnard and Serebrenik 2008] — all of which rely on the generation of linear ranking
functions. For example, the termination analysis tools Terminator [Cook et al. 2006],
COSTA [Albert et al. 2007], and Julia [Spoto et al. 2010] are based on proving termi-
nation of such loops by means of a linear ranking function.

It is known that the linear-ranking approach cannot completely resolve the prob-
lem [Podelski and Rybalchenko 2004; Braverman 2006], since not every terminating
program has such a ranking function — this is the case, for example, for loop (1) above.
Moreover, the linear-programming based approaches are not sensitive to the assump-
tion that the data are integers. Thus, the problem of decidability of termination for
linear-constraint loops, as loop form (5) above, stays open, in its different variants. We
feel that the most intriguing problem is the following:

Is the termination of a single linear-constraint loop decidable, when the co-
efficients are rational numbers and the variables range over the integers?

The problem may be considered for a given initial state, for any initial state, or for a
(linearly) constrained initial state.

Our contribution. In this research, we focus on hardness proofs. Our basic tool is
a new simulation of counter programs (also known as counter machines) by a sim-
ple integer loop. The termination of counter programs is a well-known undecidable
problem. While we have not been able to fully answer the major open problem above,
this technique led to some interesting results which improve our understanding of the
simple-loop termination problem. We next summarize our main results. All concern
integer variables.

(1) We prove undecidability of termination, either for all inputs or a given input, for
simple loops (a variation of loop form (4)) which iterate a straight-line sequence
of simple assignment instructions. The right-hand sides are integer linear expres-
sions except for one instruction type, which computes the step function

f(x) =

{
0 x ≤ 0
1 x > 0

At first sight it may seem like the inclusion of such an instruction is tantamount
to including a branch on zero, which would immediately allow for implementing
a counter program. This is not the case, because the result of the function is put
into a variable which can only be combined with other variables in a very limited
way. We complement this result by pointing out other natural instructions that can

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Ben-Amram et al.

be used to simulate the step function. This include integer division by a constant
(with truncation towards zero) and truncated subtraction.

(2) Building upon the previous result, we prove undecidability of termination, either
for all inputs or for a given input, of linear-constraint loops (a variation of loop
form (5)) where one irrational number may appear (more precisely, the coefficients
are from Z ∪ {r} for an arbitrary irrational number r).

(3) Instead of moving to linear-constraint loops, we can also achieve the undecidability
result with loops whose body is a deterministic update of the form “if x > 0 then
(one linear update) else (another linear update).” Thus, the update function con-
sists of two linear pieces. This is a non-trivial refinement of the first result, which
uses the step function several times in the loop body.

(4) We observe that while linear-constraint loops (5) with rational coefficients seem
to be insufficient for simulating all counter programs, it is possible to simulate a
subclass, namely Petri nets, leading to the conclusion that termination for a given
input is at least EXPSPACE-hard.

(5) Finally, we review our undecidability results and express the hardness of the cor-
responding problems in terms of the arithmetic and the analytic hierarchy.

We would like to highlight the relation of our results to a discussion by Braverman
[2006, Section 6], where he notes that linear-constraint loops are non-deterministic
and asks:

How much non-determinism can be introduced in a linear loop with no ini-
tial conditions before termination becomes undecidable?

It is interesting that our reduction to linear-constraint loops, when using the irrational
coefficient, produces constraints that are deterministic. The role of the constraints is
not to create non-determinism; it is to express complex relationships among variables.
We may also point out that some limited forms of linear-constraint loops (that are
very non-deterministic since they are weaker constraints) have a decidable termina-
tion problem (see Section 8). Braverman also discusses the difficulty of deciding termi-
nation for a given input, a problem that he left open. Our results apply to this variant,
providing a partial answer to this open problem.

The rest of this paper is organized as follows. Section 2 presents some preliminaries;
Section 3 studies the termination of straight-line while loops with a “built-in” function
that represents the step function; Section 4 attempts to apply the technique of Sec-
tion 3 to the case of linear-constraint loops, and discusses the extension with one irra-
tional coefficient, while Section 5 proves the result on updates with two linear pieces.
Section 6 describes how a Petri net can be simulated with linear-constraint loops; Sec-
tion 7 reviews our undecidability result and express the hardness of these problems in
terms of the arithmetic and the analytic hierarchy; Section 8 discusses some related
work; and Section 9 concludes.

2. PRELIMINARIES
In this section we define the syntax of integer piecewise linear while loops, integer
linear-constraint loops, and counter programs.

2.1. Integer piecewise linear loops
An integer piecewise linear loop (IPL loop for short) with integer variables X1, . . . , Xn

is a while loop of the form

while b1 ∧ · · · ∧ bm do {c1; . . . ; cn}

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

On the Termination of Integer Loops A:5

where each condition bi is a linear inequality a0 +a1 ∗X1 + · · ·+an ∗Xn ≥ 0 with ai ∈ Z,
and each ci is one of the following instructions

Xi := Xj +Xk | Xi := a ∗Xj | Xi := a | Xi := isPositive(Xj)

such that a ∈ Z and

isPositive(X) =

{
0 X ≤ 0
1 X > 0

We consider isPositive to be a primitive, but in the next section we will consider alter-
natives. The semantics of an IPL loop is the obvious: starting from initial values for
the variables X1, . . . , Xn (the input), if the condition b1 ∧ · · · ∧ bn (the loop guard) holds
(we say that the loop is enabled), instructions c1, . . . , cn are executed sequentially, and
the loop is restarted at the new state. If the loop guard is false, the loop terminates.
For simplicity, we may use composite expressions, e.g., X1 := 2 ∗X2 + 3 ∗X3 + 1, which
should be taken to be syntactic sugar for a series of assignments, possibly using tem-
porary variables.

2.2. Integer linear-constraint loops
An integer linear-constraint loop (ILC loop for short) over n variables ~x = 〈X1, . . . , Xn〉
has the form

while (B~x ≥ ~b) do A
(
~x
~x′

)
≤ ~c

where for some m, p > 0, B ∈ Rm×n, A ∈ Rp×2n, ~b ∈ Rm and ~c ∈ Rp. The case we are
most interested in is that in which the constant matrices and vectors are composed of
rational numbers; this is equivalent to assuming that they are all integer (just multiply
by a common denominator).

Semantically, a state of such a loop is an n-tuple 〈x1, . . . , xn〉 of integers, and a tran-
sition to a new state ~x′ = 〈x′1, . . . , x′n〉 is possible if ~x, ~x′ satisfy all the constraints in the
loop guard and the loop body. We say that the loop terminates for a given initial state
if all possible executions from that state are finite, and that it universally terminates
if it terminates for every initial state. We say that the loop is deterministic if there is
at most one successor state to any state. Note that the guard B~x ≥ ~b is actually re-
dundant, since its constraints can be incorporated in those of the loop body. However,
we prefer to keep this form for its similiarity with other loop forms studied in previous
works, as well as ours (see (1)–(5) in the introduction).

2.3. Counter programs
A (deterministic) counter program PC with n counters X1, . . . , Xn is a list of labeled
instructions 1:I1, . . . ,m:Im,m+1:stop where each instruction Ik is one of the following:

incr(Xj) | decr(Xj) | if Xj > 0 then k1 else k2

with 1 ≤ k1, k2 ≤ m+1 and 1 ≤ j ≤ n. A state is of the form (k, 〈a1, . . . , an〉) which indi-
cates that Instruction Ik is to be executed next, and the current values of the counters
are X1 = a1, . . . , Xn = an. In a valid state, 1 ≤ k ≤ m + 1 and all ai ∈ N (it will some-
times be useful to also consider invalid states, and assume that they cause a halt). Any
state in which k = m + 1 is a halting state. For any other valid state (k, 〈a1, . . . , an〉),
the successor state is defined as follows.

— If Ik is decr(Xj) (resp. incr(Xj)), then Xj is decreased (resp. increased) by 1 and the
execution moves to label k + 1.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Ben-Amram et al.

— If Ik is “if Xj > 0 then k1 else k2”, then the execution moves to label k1 if Xj is
positive, and to k2 if it is 0. The values of the counters do not change.

The following are known facts about the halting problem for counter programs.

THEOREM 2.1 (MINSKY [1967]). The halting problem for counter programs with
n ≥ 2 counters and the initial state (1, 〈0, . . . , 0〉) is undecidable.

The termination problem is the problem of deciding whether a given program halts
for every input2. The Mortality problem asks whether the program halts when started
at any state (even a state that cannot be reached in a valid computation).

THEOREM 2.2 (BLONDEL ET AL. [2001]). The mortality problem for counter pro-
grams with n ≥ 2 counters is undecidable.

As mentioned in the introduction, the termination problem usually addressed in the
context of program analysis is close (or even identical) to the mortality problem, since
one takes a program loop (possibly without any context) and asks whether it can be
shown to halt on every initial state. Hence, the last theorem is useful for proving un-
decidability of such termination problems.

3. TERMINATION OF IPL LOOPS
In this section, we investigate the decidability of the following problems: given an IPL
loop P ,

(1) Does P terminate for a given input?
(2) Does P terminate for all inputs?

We show that both problems are undecidable by reduction from the halting and mor-
tality problems, respectively, for counter programs. To see where the challenge in this
reduction lies, note that the loops under consideration iterate a fixed block of straight-
line code, while a counter program has a program counter that determines the next
instruction to execute. While one can easily keep the value of the program counter in
a variable, it is not obvious how to make the computation depend on this variable, and
how to simulate branching.

3.1. The reduction
Given a counter program PC ≡ 1:I1, . . . ,m:Im,m+1:stop with counters X1, . . ., Xn, we
generate a corresponding IPL loop T (PC) as follows:

while (A1 ≥ 0 ∧ · · · ∧Am ≥ 0 ∧A1 + · · ·+Am = 1 ∧X1 ≥ 0 ∧ · · · ∧Xn ≥ 0) do {
N0 := 0; N1 := A1; . . . Nm := Am;
F1 := isPositive(X1); . . . Fn := isPositive(Xn);
T (1:I1)

...
T (m:Im)
A1 := N0; . . . Am := Nm−1

}

where T (k:Ik) is defined as follows

2We also use this term when considering a given input and the termination of all paths of a non-deterministic
program.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

On the Termination of Integer Loops A:7

— If Ik ≡ incr(Xj), then T (k:Ik) is Xj := Xj +Ak;

— If Ik ≡ decr(Xj), then T (k:Ik) is Xj := Xj −Ak;

— If Ik ≡ if Xj > 0 then k1 else k2, then T (k:Ik) is

Tk := isPositive(Ak + Fj − 1);
Rk := isPositive(Ak − Fj);
Nk := Nk −Ak;
Nk1−1 := Nk1−1 + Tk;
Nk2−1 := Nk2−1 +Rk;

Example 3.1. Consider the following 2-counter program PC , which decrements x
and y until one of them reaches 0

1: x=x-1
2: if x>0 then 3 else 5
3: y=y-1
4: if y>0 then 1 else 5
5: stop

Applying T (PC) results in the following IPL loop
1 while(A1 ≥ 0 ∧ · · · ∧A4 ≥ 0 ∧A1 + · · ·+A4 = 1 ∧ x ≥ 0 ∧ y ≥ 0) do {
2 N0 := 0; N1 := A1; N2 := A2; N3 := A3; N4 := A4;
3 Fx := isPositive(x); Fy := isPositive(y);
4

5 x := x−A1;
6

7 T2 := isPositive(A2 + Fx − 1);
8 R2 := isPositive(A2 − Fx);
9 N2 := N2 −A2;

10 N0 := N0 + T2;
11 N4 := N4 +R2;
12

13 y := y −A3;
14

15 T4 := isPositive(A4 + Fy − 1);
16 R4 := isPositive(A4 − Fy);
17 N4 := N4 −A4;
18 N0 := N0 + T4;
19 N4 := N4 +R4;
20

21 A1 := N0; A2 := N1; A3 := N2; A4 := N3;
22 }

Line 5 corresponds to instruction I1, lines 7–11 to instruction I2, Line 13 to instruction
I3, and lines 15–19 to instruction I4.

Let us first state, informally, the main ideas behind the reduction, and then prove it
more formally.

(1) Variables A1, . . . , Am are flags that indicate the instruction to be executed next.
They take values from 0, 1, and only one of them can be 1 as stated by the loop
guard. Note that an operation Xj := Xj +Ak (resp. Xj := Xj −Ak) will have effect
only when Ak = 1, and otherwise is a no-op. This is a way of simulating only one
instruction in every iteration.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Ben-Amram et al.

(2) The values of Ai are modified in a way that simulates the control of the counter
machine. Namely, if Ak = 1, and the instruction Ik is incr(Xj) or decr(Xj), then
the last line in the loop body sets Ak+1 to 1 and the rest to 0. If Ik is a condition,
it will set Ak1 or Ak2 , depending on the tested variable, to 1, and the rest to 0. The
variables Fk, Nk, Rk, and Tk are auxiliary variables for implementing this.

LEMMA 3.2. Let PC be a counter program, T (PC) its corresponding IPL loop,
S ≡ (k, 〈a1, . . . , an〉) a valid state for PC , and ST a state of T (PC) where
A1 = 0, . . . , Ak = 1, . . . , Am = 0, X1 = a1, . . . , Xn = an. If S has a successor state
(k′, 〈a′1, . . . , a′n〉) in PC , then the loop of T (PC) is enabled at ST and its execution leads to
a state in which A1 = 0, . . . , Ak′ = 1, . . . , Am = 0, X1 = a′1, . . . , Xn = a′n. If S is a halting
configuration of PC , the loop of T (PC) is disabled at ST .

PROOF. It is clear that if an execution step is possible in PC then 0 ≤ k ≤ m and all
Xj are non-negative, and thus the condition of the loop T (PC) is true. Now note that
when Ak = 0 the encoding of Ik does not change the value of any Ni or Xj , and consider
the following two cases: (1) If Ik is incr(Xj) (resp. decr(Xj)), then PC increments (resp.
decrements) Xj and moves to label k′ = k + 1. Clearly the encoding of Ik increments
(resp. decrements) Xj and all Ni are not modified. Since Nk = Ak = 1, the last line
of the loop sets Ak+1 to 1 (unless k + 1 = m + 1) and all other Ai to 0. (2) if Ik is
if Xj > 0 then k1 else k2, then the counter machine moves to k1 (resp. k2) ifXj > 0 (resp.
Xj = 0). Suppose Xj > 0, then Tk = 1 and Rk = 0, Nk1−1 = 1 and Nk2−1 = 0. Thus,
when reaching the last line the instruction Ak1 := Nk1−1 sets Ak1 (unless k1 = m + 1).
The case where Xj = 0 is similar. In a halting state, k = m + 1 which means that
A1, . . . , Am = 0. Hence, the loop is disabled.

LEMMA 3.3. A counter program PC with n ≥ 2 counters terminates for
the initial state (k, 〈a1, . . . , an〉) if and only if T (PC) terminates for input
A1 = 0, . . . , Ak = 1, . . . , Am = 0, X1 = a1, · · · , Xn = an.

PROOF. An immediate consequnce of Lemma 3.2.

Note that when values of the variables in T (PC) do not correspond to a valid state for
PC , then the guard of T (PC) is disabled and thus T (PC) terminates for such input.
This, together with Lemma 3.3, and theorems 2.1 and 2.2, imply

THEOREM 3.4. The halting problem and the termination problem for IPL loops are
undecidable.

3.2. Examples of piecewise-linear operations
The isPositive operation can easily be simulated by other natural instructions, yielding
different instruction sets that suffice for undecidability.

Example 3.5 (Integer division). Consider an instruction that divides an integer
variable by an integer constant and truncates the result towards zero (also if it is
negative). Using this kind of division, we have

isPositive(X) = X − 2 ∗X − 1

2

and thus, termination is undecidable for loops with linear assignments and integer
division of this kind.

Example 3.6 (Truncated subtraction). Another common piecewise-linear function
is truncated subtraction, such that x−̇y is the same as x − y if it is positive, and
otherwise 0. This operation allows for implementing isPositive thus: isPositive(X) =
1−̇(1−̇X).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

On the Termination of Integer Loops A:9

4. REDUCTION TO ILC LOOPS
In this section we turn to integer linear-constraint loops. We first attempt to modify
the reduction described in Section 3 to produce ILC loops in which all coefficients are
rational, and explain where and why it fails. So we do not obtain undecidability for
ILC loops with rational coefficients, but we show that if there is one irrational number
that we are allowed to use in the constraints (any irrational will do) the reduction can
be completed and undecidability of termination proved.

In Section 6 we describe another way of handling the failure of the reduction with
rational coefficients only: reducing from a weaker model, and thereby proving a lower
bound which is weaker than undecidability (but still non-trivial).

Observe that the loop constructed in Section 3 uses non-linear expressions only for
setting the flags Tk,Rk and Fj , the rest is clearly linear. Assuming that we can encode
these flags with integer linear constraints, adapting the rest of the reduction to ILC
loops is straightforward: it can be done by rewriting T (PC) to avoid multiple updates
of a variable (that is, to static single assignment form) and then representing each
assignment as an equation instead. Thus, in what follows we concentrate on how to
represent those flags using integer linear constraints.

4.1. Encoding Tk and Rk using integer linear constraints
In Section 3, we defined Tk as isPositive(Ak+Fj−1) and Rk as isPositive(Ak−Fj). Since
0 ≤ Ak ≤ 1 and 0 ≤ Fj ≤ 1, it is easy to verify that this is equivalent to respectively
imposing the constraint Ak+Fj−1 ≤ 2 ·Tk ≤ Ak+Fj and Ak−Fj ≤ 2 ·Rk ≤ Ak−Fj +1.

4.2. Encoding Fj with integer linear constraints with rational coefficients
Now we discuss the difficulty of encoding the flag Fj using integer linear constraints
with rational coefficients only. The following lemma states that such encoding is not
possible.

LEMMA 4.1. Given non-negative integer variables X and F , it is impossible to
define a system of integer linear constraints Ψ (with rational coefficients) over X,
F , and possibly other integer variables, such that Ψ ∧ (X = 0) → (F = 0) and
Ψ ∧ (X > 0)→ (F = 1).

PROOF. The proof relies on a theorem by Meyer [1975] which states that the follow-
ing piecewise linear function

f(x) =

{
0 x = 0
1 x > 0,

where x is a non-negative real variable, cannot be defined as a minimization mixed
integer programming (MIP for short) problem with rational coefficients only. More
precisely, it is not possible to define f(x) as

f(x) = minimize g w.r.t. Ψ

where Ψ is a system of linear constraints with rational coefficients over x and other
integer and real variables, and g is a linear function over vars(Ψ). Now suppose that
Lemma 4.1 is false, i.e., there exists Ψ such that Ψ ∧ (X = 0)→ (F = 0) and Ψ ∧ (X >
0)→ (F = 1), then the following MIP problem

f(x) = minimize F w.r.t. Ψ ∧ (x ≤ X)

defines the function f(x), which contradicts the result of Meyer [1975].

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Ben-Amram et al.

4.3. ILC loops with an irrational constant
There are certain extensions of the ILC (with rational coefficients) model that allow
our reduction to be carried out. Basically, the extensions should allow for encoding the
flag Fj . The extension which we describe in this section allows the use of a single,
arbitrary irrational number r (we do not require the specific value of r to represent
any particular information). Thus, the coefficients are now over Z ∪ {r}. The variables
still hold integers.

LEMMA 4.2. Let r be an arbitrary positive irrational number, and let

Ψ1 ≡ (0 ≤ Fj ≤ 1) ∧ (Fj ≤ X)

Ψ2 ≡ (rX ≤ B) ∧ (rY ≤ A) ∧ (−Y ≤ X) ∧ (A+B ≤ Fj) .

Then (Ψ1 ∧Ψ2 ∧X = 0)→ Fj = 0 and (Ψ1 ∧Ψ2 ∧X > 0)→ Fj = 1.

PROOF. The constraint Ψ1 forces Fj to be 0 when X is 0, and when X is positive Fj
can be either 0 or 1. The role of Ψ2 is to eliminate the non-determinism for the case
X > 0, namely, for X > 0 it forces Fj to be 1. The property that makes Ψ2 work is that
for a given non-integer number d, and two integers A and B, the condition −A ≤ d ≤ B
implies A+B ≥ 1, whereas for an integer d the sum may be zero.

To prove the desired result, we first show that if X = 0, Fj = 0 is a solution. In
fact, one can choose B = A = Y = 0 and all conditions are then fulfilled. Secondly, we
consider X > 0. Note that rX is then a non-integer number, so necessarily B > rX.
Similarly, A > rY , or equivalently −A < r(−Y) ≤ rX. Thus, −A < B, and A + B ≤ Fj
implies 0 < Fj . Choosing B = drXe, Y = (−X) and A = drY e yields A + B = 1, so
Fj = 1 is a solution.

Remark: the variable Y was introduced in order to avoid using another irrational co-
efficient (−r).

Example 4.3. Let us consider r =
√

2. When X = 0, Ψ1 forces Fk to be 0, and it
is easy to verify that Ψ2 is satisfiable for X = Y = A = B = Fk = 0. Now, for the
positive case, let for example X = 5, then Ψ1 limits Fk to the values 0 or 1, and Ψ2

implies (
√

2 · 5 ≤ B) ∧ (−
√

2 · 5 ≤ A) since Y ≥ −5. The minimum values that A and B
can take are respectively −7 and 8, thus it is not possible to choose A and B such that
A + B ≤ 0. This eliminates Fk = 0 as a solution. However, for these minimum values
we have A+B = 1 and thus A+B ≤ Fk is satisfiable for Fk = 1.

THEOREM 4.4. The termination of ILC loops where the coefficients are from Z∪{r},
for a single arbitrary irrational constant r, is undecidable.

We have mentioned, above, Meyer’s result that MIP problems with rational coeffi-
cients cannot represent the step function over reals. Interestingly, he also shows that
it is possible using an irrational constant, in a manner similar to our Lemma 4.2. Our
technique differs in that we do not make use of minimization or maximization, but
only of constraint satisfaction, to define the function.

5. LOOPS WITH TWO LINEAR PIECES
The reduction in Section 3 presented the loop body as a sequence of instructions that
compute either linear or piecewise-linear operations. This means that the loop body,
considered as a function from the entry state to the exit state, is piecewise-linear. In
order to get closer to the simplest form where decidability is open, namely a body which
is an affine-linear deterministic update, in Section 4 we have considered functions rep-
resented by integer linear constraints instead of affine functions. Another manner of

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

On the Termination of Integer Loops A:11

getting closer to the simplest case is to reduce the number of non-linearities. More pre-
cisely, we consider the update to be a function, the union of several linear pieces, and
ask how many such pieces make the termination problem undecidable. Next, we im-
prove the proof from Section 3 in this respect, reducing the usage of the step function.
This will imply the following theorem.

THEOREM 5.1. The halting problem and the termination problem are undecidable
for loops of the following form

while (B~x ≥ ~b) do ~x :=

{
A0~x Xi ≤ 0
A1~x Xi > 0

where the state vector ~x = 〈X1, . . . , Xn〉 ranges over Zn, A0, A1 ∈ Zn×n, ~b ∈ Zp for some
p > 0, B ∈ Zp×n, and Xi ∈ ~x.

The proof is a reduction from the corresponding problems for two-counter machines.
Recall that Minsky [1967] proved that halting for a given input is undecidable with
two counters, and Blondel et al. [2001] proved it for mortality. The reduction shown
in Section 3, instantiated for the case of two counters, almost establishes the result.
Observe that if the values of F1 and F2 are known, then the flags Tk and Rk can be set
to a linear function of Ak, e.g., Tk := isPositive(Ak+F1−1) can be rewritten to Tk := Ak
when F1 = 1, and to Tk := 0 when F1 = 0.

Thus, the body of the loop can be expressed by a linear function in each of the four
regions determined by the signs of X1 and X2 (which define the values of F1 and F2). In
what follows we modify the construction to reduce the four regions to only two regions.

The basic idea is to replace the two instructions F1 := isPositive(X1) and F2 :=
isPositive(X2) by the single instruction F := isPositive(X1), which will compute the
signs of both X1 and X2. This is done by introducing an auxiliary iteration such that
in one iteration F is set according to the sign of X2, and in the next iteration it is set
according to the sign of X1 (by swapping the values of X1 and X2).

We now assume given a counter program PC ≡ 1:I1, . . . ,m:Im,m+1:stop with two
counters X1 and X2. We first extend the set of flags Ak to range from A1 to A2m, and
Nk to range from N0 to N2m. We also let k1, . . . , ki be indices of all instructions that
perform a zero-test. Then, PC is translated to an IPL loop T ′(PC) as follows

while (A1 ≥ 0 ∧ · · · ∧A2m ≥ 0 ∧A1 + · · ·+A2m = 1 ∧X1 ≥ 0 ∧X2 ≥ 0∧
0 ≤ Tk1 +Rk1 ≤ A2k1 ∧ · · · ∧ 0 ≤ Tki +Rki ≤ A2ki)

N0 := 0; N1 := A1; . . . N2m := A2m;
(X2,X1) := (X1,X2); // swap X1, X2

F := isPositive(X1);
T ′(1:I1);

...
T ′(m:Im)
A1 := N0; A2 := N1; . . . A2m := N2m−1

}

The translation T ′ of counter-program instructions follows. For increment and decre-
ment, it is similar to what we have presented in Section 3, we only modify the indexing
of the Ak variables.

— If Ik ≡ incr(Xj), then T ′(k:Ik) is Xj := Xj +A2k

— If Ik ≡ decr(Xj), then T ′(k:Ik) is Xj := Xj −A2k

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Ben-Amram et al.

For the conditional instruction, there are different translations for a test on X1 and for
a test on X2:

— If Ik ≡ if X1 > 0 then k1 else k2, then T ′(k:Ik) is

Tk := isPositive(A2k + F − 1);

Rk := isPositive(A2k − F);

N2k := N2k −A2k;

N2k1−2 := N2k1−2 + Tk;

N2k2−2 := N2k2−2 +Rk;

— If Ik ≡ if X2 > 0 then k1 else k2, then T ′(k:Ik) is

N2k := N2k −A2k;

N2k1−2 := N2k1−2 + Tk;

N2k2−2 := N2k2−2 +Rk;

Tk := isPositive(A2k−1 + F − 1);

Rk := isPositive(A2k−1 − F);

Note that the above IPL loop can be represented in the form described in Theorem 5.1.
This is because when the value of F is known, each of Tk and Rk can be set to a linear
function of the corresponding Ak.

Example 5.2. Consider again the counter program of Example 3.1, and note that,
in T (PC), the loop body can be expressed as a four-piece linear function depending on
the signs of x and y. This is because, as we have mentioned before, once the flags Fx
and Fy are known, then the flags T2, R2, T3 and R3 can be defined by means of linear
expressions. Applying the new transformation T ′ results in the following IPL loop:

1 while(A1 ≥ 0 ∧ . . . ∧A8 ≥ 0 ∧A1 + · · ·+A8 = 1∧
2 x ≥ 0 ∧ y ≥ 0 ∧ 0 ≤ T2 +R2 ≤ A4 ∧ 0 ≤ T4 +R4 ≤ A8) do {
3 N0 := 0; N1 := A1; . . .; N8 := A8;
4 (y, x) := (x, y); // swap x and y
5 F := isPositive(x);
6

7 x := x−A2;
8

9 T2 := isPositive(A4 + F − 1);
10 R2 := isPositive(A4 − F);
11 N4 := N4 −A4;
12 N4 := N4 + T2;
13 N8 := N8 +R2;
14

15 y := y −A6;
16

17 N8 := N8 −A8;
18 N0 := N0 + T4;
19 N8 := N8 +R4;
20 T4 := isPositive(A7 + F − 1);
21 R4 := isPositive(A7 − F);
22

23 A1 := N0; A2 := N1; . . . A8 := N7;
24 }

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

On the Termination of Integer Loops A:13

Line 7 corresponds to instruction I1, lines 9–13 to instruction I2, Line 15 to instruction
I3, and lines 17–21 to instruction I4. Note that the body of this loop can be expressed
as a two-piece linear function depending on the sign of x, since once the value of F is
known, the values of T2, R2, T3 and R3 can be defined by linear expressions.

Let us explain the intuition behind the above reduction. First note that even indices
for Ak represent labels in the counter program, while odd indices are used to introduce
the extra iteration that computes the sign of X2. Suppose the counter program is in
a state (k, 〈a1, a2〉). To simulate one execution step of the counter program, we start
the IPL loop from a state in which A2k−1 = 1 (all other Ai are 0), X1 = a1, X2 = a2,
and all Ti and Ri are set to 0. Starting from this state, in the first iteration the counter
variables are swapped, F is set according to the sign ofX2, and executing the encodings
of all instructions is equivalent to no-op, except when Ik is a test on X2 in which case
the corresponding Rk and Tk record the result of the test. At the end of this iteration
the last line of the loop body sets A2k to 1. In the next iteration, the counter variables
are swapped again, and F is set to the sign of X1. Then

— if Ik ≡ incr(Xj) or Ik ≡ decr(Xj), then T ′(Ik) simulates the corresponding counter-
program instruction (since in such encoding we use the flag A2k), and A2(k+1)−1 is
set to 1.

— if Ik ≡ if X1 > 0 then k1 else k2, then T ′(Ik), as in Section 3, sets either A2k1−1 or
A2k2−1 to 1, i.e., it simulates a jump to k1 or k2.

— if Ik ≡ if X2 > 0 then k1 else k2, then the first 3 lines of T ′(Ik), together with the last
line of the loop body, set either A2k1−1 or A2k2−1 to 1, i.e., it simulates a jump to k1
or k2. Note that it uses the values of Tk and Rk computed in the previous iteration.
In addition, Tk and Rk are set to 0.

This basically implies that if one execution step of the counter program leads to a
configuration (k′, 〈a′1, a′2〉), then two iterations of the IPL loop lead to a state in which
A2k′−1 = 1 (and all other Ai are 0), X1 = a′1, X2 = a′2, and all Ri and Ti are 0. Thus,
with a proper initial state, we obtain a step-by-step simulation of the counter program,
proving that the halting problem has been reduced correctly.

Recall that we prove undecidability of the termination problem for our loops by re-
ducing from the mortality problem for counter programs, in which any initial config-
uration of the counter program is admissible. We have seen that every initial state in
which only one A2k−1 is set to 1, for any k, and all Tk and Rk (when Ik is a test on
X2) are 0, simulates a possible state of the counter program. To establish correctness
of the reduction, we should extend the argument to cover the cases that the program
is started with A2k set to 1, or some Tk and Rk are not 0. We refer to such states as
improper since they do not arise in a proper simulation of the counter program.

— WhenA2k−1 is set to 1, and some Tk andRk are not 0, the condition 0 ≤ Tk+Rk ≤ A2k

is false, and thus the loop is not enabled.
— When A2k is set to 1, it is easy to verify that after one iteration: if Ik is increment (or

decrement), then A2k+1 is set to 1 (unless k = m). If Ik is a test, then either A2k1−1 or
A2k2−1, or none of the Ai, is set to 1, depending on the values of Tk and Rk (at most
one of them can be 1). In all cases, all Tk and Rk are set to the intended values.

We conclude that starting at an improper state either leads to immediate termina-
tion, or into a proper state. Thus, termination of the loop for all initial states reflects
correctly the mortality of the counter program.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Ben-Amram et al.

6. SIMULATION OF PETRI NETS
Let us consider a counter machine as defined in Section 2, but with a weak conditional
statement “if Xj > 0 then k1 else k2” which is interpreted as: if Xj is positive then the
execution may continue to either label k1 or label k2, otherwise, if it is zero, the execu-
tion must continue at label k2. This computational model is equivalent to a Petri net.
From considerations as those presented in Section 4, we arrived at the conclusion that
the weak conditional, and therefore Petri nets, can be simulated by an ILC loop with
rational coefficients. In this section, we describe this simulation and its implications.

A (place/transition) Petri net [Reisig 1985] is composed of a set of countersX1, . . . , Xn

(known as places) and a set of transitions t1, . . . , tm. A transition is essentially a com-
mand to increment or decrement some places. This may be represented formally by
associating with transition t its set of decremented places •t and its set of incremented
places t•. A transition is said to be enabled if all its decremented places are non-zero,
and it can then be fired, causing the decrements and increments associated with it to
take place. Starting from an initial marking (values for the places), the state of the net
evolves by repeatedly firing one of the enabled transitions.

LEMMA 6.1. Given a Petri net P with initial marking M , a simulating ILC loop
(with rational coefficients) with an initial condition ΨM can be constructed in polyno-
mial time, such that the termination of the loop from an initial state in ΨM is equivalent
to the termination of P starting from M .

PROOF. The ILC loop will have variables X1, . . . , Xn that represent the counters
in a straight-forward way, and flags A1, . . . , Am that represent the choice of the next
transition much as we did for counter programs. The body of the loop is ∆∧Ψ∧Φ where

∆ ≡
m∧
k=1

(A′k ≥ 0) ∧ (A′1 ++A′m = 1)

Ψ ≡
n∧
i=1

(Xi ≥
∑

k:i∈•tk

A′k)

Φ ≡
n∧
i=1

(X ′i = Xi −
∑

k:i∈•tk

A′k +
∑

k:i∈tk•
A′k)

The loop guard is X1 ≥ 0 ∧ · · · ∧Xn ≥ 0. The initial state ΨM simply forces each Xi to
have the value as stated by the initial marking M . Note that the initial values of Ai
are not important since they are not used (we only use A′k). As before, the constraint ∆
ensures that one and only one of the A′k will equal 1 at every iteration. The constraint
Ψ ensure that A′k may receive the value 1 only if transition k is enabled in the state.
The constraint Φ (the update) simulates the chosen transition.

Example 6.2. Consider the following Petri net

X1X2X3X4X5

t1t2

t3t4

which has 5 places X1, . . . , X5 and 4 transitions t1, . . . , t4. The translation, as described
above, of this net to an ILC loop results in

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

On the Termination of Integer Loops A:15

1 while(X1 ≥ 0 ∧X2 ≥ 0 ∧X3 ≥ 0 ∧X4 ≥ 0 ∧X5 ≥ 0) do {
2 A′1 ≥ 0 ∧A′2 ≥ 0 ∧A′3 ≥ 0 ∧A′4 ≥ 0 ∧A′1 +A′2 +A′3 +A′4 = 1∧
3

4 X1 ≥ A′1 ∧
5 X2 ≥ A′3 ∧
6 X3 ≥ A′3 +A′4 ∧
7 X4 ≥ A′4 ∧
8 X5 ≥ A′2 ∧
9

10 X ′1 = X1 +A′3 −A′1 ∧
11 X ′2 = X2 +A′1 −A′3 ∧
12 X ′3 = X3 +A′1 +A′2 −A′3 −A′4 ∧
13 X ′4 = X4 +A′2 −A′4 ∧
14 X ′5 = X5 +A′4 −A′2
15 }

Line 2 corresponds to ∆, lines 4–8 to Ψ, and lines 10–14 to Φ.

The importance of this result lies in the fact that complexity results for Petri net
are now lower bounds on the complexity of the corresponding problems for ILC loops,
and in particular, from a known result about the termination problem [Esparza 1998;
Lipton 1976], we obtain the following.

THEOREM 6.3. The termination problem for ILC loops (with rational coefficients),
for a given input, is at least EXPSPACE-hard.

Note that the reduction does not provide useful information on universal termination
of ILC loops with rational coefficients, since universal termination of Petri nets (also
known as structural boundedness) is PTIME-decidable [Memmi and Roucairol 1980;
Esparza and Nielsen 1994].

6.1. A lower bound for deterministic updates
In the introduction, we noted the fact that our use of constraints for the undecidability
result in Section 4 did not involve non-determinism. The ILC loop we constructed to
prove Theorem 6.3 was non-deterministic, but we will now show that the result also
holds for loops which are deterministic (though defined by constraints). The result
will require, however, that the loop precondition be non-deterministic, that is, we ask
about termination for a set of states, not for a single state (and not for all possible
states, either).

To explain the idea, we look at the Petri nets constructed in Lipton’s hardness proof.
This proof is a reduction from the halting problem for counter programs with a certain
space bound (note that the halting problem for a space-bounded model is the canon-
ical complete problem for a space complexity class). Given a counter program P , the
reduction constructs a Petri net NP that has the following behavior when started at
an appropriate initial state. NP has two kinds of computations, successful and fail-
ing. Failing computations are caused by taking non-deterministic branches which are
not the correct choice for simulating P . Failing computations always halt. The (single)
successful computation simulates P faithfully. If (and only if) P halts, the successful
computation reaches a state in which a particular flag, say HALT, is raised (that is,
incremented from 0 to 1). This flag is never raised in failing computations.

This network NP can be translated into an ILC loop LP as previously described. We
eliminate the non-determinism from LP by using an unconstrained input variableO as
an oracle, to guide the non-deterministic choices. In addition, we reverse the program’s

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Ben-Amram et al.

behaviour: our loop will terminate (on all states of interest) if and only if P does not
terminate (note that P is presumably input-free and deterministic).

THEOREM 6.4. The termination problem for ILC loops (with rational coefficients),
for a partially-specified input, is at least EXPSPACE-hard, even if the update is deter-
ministic.

We describe the changes to the previous reduction. We use assignment commands
for convenience. We will later show that they can all be translated into linear con-
straints. We assume that NP has m transitions and n places. The construction of LP
is obtained as in the previous reduction with the following changes: (1) we introduce a
new variable O, and include O > 0 in the loop guard; and (2) ∆ is replaced by

PC := O mod (m+ 2)

O := O div (m+ 2)

Ak := [PC = k] (for all 1 ≤ k ≤ m+ 1)
O := O + (m+ 1) ·HALT

The notation [PC = k] means 1 if the PC = k and 0 otherwise. Also, Am+1 is a new flag
which is not associated with any transition of NP ; it represents a do-nothing transition
(the iteration does, however, decrease O).

Let ΨM be HALT = 0 ∧X1 = a1 ∧ · · · ∧Xn = an ∧O > 0 where ai is the initial value
of place Xi in M . We claim that LP terminates for all input in ΨM if and only if NP
does not terminate for M (or equivalently, P does not halt).

Clearly, O guides the choice of transitions. It makes our loop deterministic, but any
sequence of net transitions can be simulated: Suppose this sequence is k1, k2, . . . , kn.
An initial value for O of k1 + (k2 + (k3 + · · ·) · (m+ 2)) · (m+ 2) will cause exactly these
transitions to be taken. As long as HALT is not set, O also keeps descending. Since the
loop condition includesO > 0, a non-halting simulation will become a terminating loop.
A halting simulation will reach the point where HALT = 1, provided the initial value of
O indicated the correct execution trace. Note that O reaches the value 0 exactly when
HALT is set. In this iteration, only Am+1 is set (so counters will not be modified), while
O is restored to m+ 1. In the next iteration, O remains m+ 1, Am+1 is set, and HALT
is set. Thus, the loop will not terminate.

Finally, the above assignments can be translated to integer linear constraints as
follows:

(O = (m+ 2) ·O′′ + PC ′) ∧ (1 ≤ PC ′ ≤ m+ 1)∧
(
∧m+1
i=1 A′i ≥ 0) ∧ (1 = A′1 + · · ·+A′m+1) ∧ (PC ′ = 1 ·A′1 + · · ·+ (m+ 1) ·A′m+1)∧

O′ = O′′ + (m+ 1) ·HALT ′ .

7. UP THE UNSOLVABILITY HIERARCHY
In this section we will review our undecidability results, and express the hardness of
these problems in terms of the arithmetic and the analytic hierarchy. This classifica-
tion reveals distinctions between problems that are all undecidable: some are more
undecidable than others. We cite definitions briefly, for more background see [Shoen-
field 1993].

7.1. In the Arithmetic Hierarchy
Definition 7.1. Σ0

1 is the class of decision problems that can be expressed by a for-
mula of the form (∃y)P (x, y) where P is a recursive (decidable) predicate. This class
coincides with the class RE of recursively-enumerable (aka computably enumerable)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

On the Termination of Integer Loops A:17

sets. Π0
2 is the class of decision problems that can be expressed by a formula of the form

(∀z)(∃y)P (x, y, z) with P recursive.

A standard RE-complete program is the halting problem for Turing machines, or
any equivalent model. A standard Π0

2-complete program is the termination problem
for Turing machines, or any equivalent model (the problem is also known as totality in
computability circles). Kurtz and Simon extended this result to mortality:

THEOREM 7.2 (KURTZ AND SIMON [2007]). The mortality problem for counter
programs with n ≥ 2 counters is Π0

2-complete.

Using our reduction from Section 3, we obtain:

THEOREM 7.3. The halting problem for IPL loops is RE-complete; the termination
problem is Π0

2-complete.

PROOF. For the halting problem, RE-hardness follows from the reduction, while
inclusion in RE follows from a reduction to Turing-machine halting (after all, an IPL
loop is just a program). For termination, we get Π0

2-completeness in the same way,
using Theorem 7.2.

The same arguments work for the loops with a two-piece-linear update as discussed
in Section 5.

7.2. In the Analytic Hierarchy
The analytic hierarchy is obtained by considering computation with an “oracle” that is
a function α from N+, the set of positive integers, to N+. The oracle can be considered
a special kind of input: this input is not initially stored in a register but can be queried
during the computation, using a new instruction of the form query(Xj). The instruction
causes α(Xj) to be placed in Xj . We distinguish this input by the use of the letter α.
If a machine that has ordinary input ~x and oracle access to α decides the predicate
P (α, ~x), we say that P is recursive.

Definition 7.4. Π1
1 is the class of decision problems that can be expressed by a for-

mula of the form (∀α)(∃y)P (α, x, y) with P recursive.

A standard Π1
1-complete program is the following variant of the halting problem:

TERM = {M | (∀α)Mα ↓},
where Mα ranges over counter machines that do not receive any input, except for
access to α. As Π1

1 strictly contains the whole arithmetic hierarchy, Π1
1-completeness

represents a degree of unsolvability far higher than Σ0
1 or Π0

2 completeness.
We will prove a Π1

1-completeness result for the halting (or termination) problem of
ILC loops using a single arbitrary irrational constant—the model addressed in The-
orem 4.4. However, we have first to remove a minor obstacle, the irrational constant
in the constraint system. Classifying a decision problem in a computability class pre-
sumes that problem instances are finite objects. So, how is an irrational constant repre-
sented? (Perhaps the reader has already wondered about this earlier.) Our assumption
is that the representation is such that inequalities involving ar ≤ b, with a, b ∈ Z, can
be effectively verified, and such that at least one irrational number can be represented.
Beyond that, we impose no constraints. For example, the LEDA reals [Mehlhorn and
Schirra 2001], a data type that supports exact comparison of algebraic numbers, would
do well.

THEOREM 7.5. The halting problem of ILC loops where the coefficients are from
Z ∪ {r}, for a single arbitrary irrational constant r, is Π1

1-complete.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Ben-Amram et al.

PROOF. Inclusion in Π1
1 follows from a reduction to TERM . To this end, an ILC loop

is encoded as a program that queries the oracle for all values of new (tagged) variables
and then verifies the constraints (which by our assumptions is an effective procedure).

Π1
1-hardness follows by reduction from TERM . The idea is to simulate an oracle ma-

chine by a constraint program. First, we note that any oracle machine may be patched,
if necessary, to record the history of all its oracle queries, and thereby avoid making the
same query twice. We can assume that the machines in TERM are so standardized.
The outcome is that the oracle behaves like a completely arbitrary stream of positive
integers. Thus, the value of Xj when query(Xj) is performed is insignificant, and we
can further patch the machine so that it actually resets Xj to zero before performing
any query. This is useful for the reduction below, which is based on our translation of
counter programs to ILC loops with one irrational coefficient (Section 4.3).

We need a short recap of this reduction. In Section 3, we translated a counter pro-
gram to an IPL loop. For each variable Xj , representing a counter, this loop might
include several assignments to Xj , specifically assignments of the form Xj := Xj ±Ak.
In Section 4, we assumed that these assignments are translated to constraints via a
single-assignment form. Thus, for every assignment of this kind, a unique variable
Xk
j is generated and the assignment is represented by the constraint Xk

j = Xj ± Ak.
If another assignment to Xj , say Xj := Xj ± A`, is found, it will be represented by
X`
j = Xk

j ±Ak. Finally, if Xt
j is the last-occurring variable of this kind, we add X ′j = Xt

j .
The reduction to ILC loops only adds a simulation of the oracle to what we have done

in sections 3–4. Consider a query instruction Iq ≡ query(Xj). Like the assignments to
Xj described above, we translate this instruction into a constraint that “sets” the vari-
able Xq

j . As above, the constraint will equate Xq
j with a previously-defined variable,

say Xk
j , plus some additive term that represents the effect of this instruction (or 0 if

the instruction is not selected).
We use dedicated variables Aq, Bq, X∗q , Y ∗q and generate the following set of con-

straints:

Ψ1 ≡ (0 ≤ Aq ≤ 1) ∧ (Aq ≤ X∗q)

Ψ2 ≡ (rX∗q ≤ Bq) ∧ (rY ∗q ≤ Aq) ∧ (−Y ∗q ≤ X∗q) ∧ (Aq +Bq ≤ Aq)
Ψ3 ≡ Xq

j = Xk
j +X∗q

Explanation: as in Section 4.3, the constraints Ψ1, Ψ2 ensure that if Aq = 0, also X∗q
must be 0, while if Aq = 1, X∗q may be any positive integer. Thus, the effect of Ψ3 is to
set the value of Xq

j to that of Xk
j plus a value which is zero if Aq = 0 (namely, if the

current instruction is not Iq) but may be any positive value if the current instruction
is Aq. This correctly simulates Iq.

For termination (on all inputs), we have to use a more complex argument, since
an initial state of the ILC loop does not necessarily represent an initial state of the
counter program, or even a valid state. We will build on the reduction of halting to
mortality by Blondel et al. [2001].

THEOREM 7.6. The termination of ILC loops, where the coefficients are from Z∪{r},
for a single arbitrary irrational constant r, is Π1

1-complete.

PROOF. Π1
1-hardness follows by reduction from TERM .

Suppose that we are given an input-free counter program M with n counters
R1, . . . , Rn, using an oracle α, so that we are to determine if it halts for all α when
computing from the standard initial state (1, 〈0, . . . , 0〉). We construct a program M ′

with n+ 3 counters R1, . . . , Rn, V,W,A.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

On the Termination of Integer Loops A:19

The program M ′ is obtained from M in two stages. First, the program is modified to
record all the queries it made to the oracle in the variable A. Whenever an oracle query
is to be made, the machine will first check whether a query on the same argument has
already been recorded, and in this case, use this result. The details of the encoding of
this query history are not important, as long as any contents of A can be processed
by the procedures for retrieving a query or recording a new query, so that there is no
danger that a “corrupt” register would cause non-termination.

The next feature of M ′ is that it has a special “reset” state q0. Each time M ′ enters
q0, it executes a sequence of instructions whose effect is to reset R1, . . . , Rn to zero,
store 2 ∗max(1, V) in W and 0 in V . After having done that, it moves into state 1 (the
initial state of M).

The operation ofM ′ in the states taken fromM is such that it simulatesM while also
performing the following operations: for every step, it increments V and decrements
W . It only performs the next instruction of M if W > 0. If W = 0, it returns to the reset
state.

The reader may want to reflect on why this ensures mortality (for all oracles) if and
only if M halts for all oracles (or turn to [Blondel et al. 2001] for explanations).

Now M ′ is further translated into an ILC loop, as in the previous proof. Every ini-
tial state of the loop, that satisfies its guard, represents some configuration of M ′,
and therefore universal termination of the loop is equivalent to mortality of M ′. This
completes the reduction from TERM to ILC loop universal termination.

Inclusion of the problem in Π1
1 follows from translating the ILC loop to an input-free

counter program, so that universal termination of the loop is equivalent to termination
of the counter program. Specifically, initial states of the ILC loop only differ on the
values of the variables. So the program, which is input-free, can create the initial state
by querying the oracle for values. It then proceeds with simulating the ILC loop, with
the help of the oracle, as in the previous proof.

This way, the universal termination of our class of ILC loops has been reduced to
TERM .

We conclude this section by noting that these results confirm, after all, Braverman’s
supposition that the non-determinism of constraint loops should make their analysis
more difficult than that of loops with deterministic updates; at least, as long one cares
about degrees of unsolvability! Indeed, if we consider a class of ILC loops where the
update is deterministic (that is, for any state ~x, exactly one successor state ~x′ is deter-
mined by the loop body), the problem falls back to the classes considered in Section 7.1.

8. RELATED WORK
Termination of integer loops has received considerable attention recently, both from
theoretical (e.g., decidability, complexity), and practical (e.g., developing tools) perspec-
tives. Research has addressed straight-line while loops as well as loops in a constraint
setting, possibly with multiple paths.

For straight-line while loops, the most remarkable results are those of Tiwari [2004]
and Braverman [2006]. Tiwari proved that the problem is decidable for linear deter-
ministic updates when the domain of the variables is R. Braverman proved that this
holds also for Q, and for the homogeneous case it holds for Z (see Section 1). Both
considered universal termination, the termination for a given input left open.

Decidability and complexity of termination of single and multiple-path ILC loops has
been intensively studied for different classes of constraints. Lee et al. [2001] proved
that termination of a multiple-path ILC loop, when the constraints are restricted to
size-change constraints (i.e., constraints of the form Xi > X ′j or Xi ≥ X ′j over N),
is PSPACE-complete. Ben-Amram and Lee [2007] and Ben-Amram and Codish [2008]

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Ben-Amram et al.

identified sub-classes of such loops for which the termination can be decided in, respec-
tively, PTIME and NPTIME. Ben-Amram [2010] extended the types of constraints al-
lowed to monotonicity constraints of the formXi > Y ,Xi ≥ Y , where Y can be a primed
or unprimed variable. Termination for such loops is, again, PSPACE-complete. All the
above results involving size-change or monotonicity constraints apply to an arbitrary
well-founded domain, although the hardness results only assume N. Monotonicity con-
straints over Z were considered by Codish et al. [2005] and by Ben-Amram [2011], con-
cluding that this termination problem too is PSPACE-complete. Recently, Bozzelli and
Pinchinat [2012] proved that it is still PSPACE-complete for gap-constraints, which
are constraints of the form X − Y ≥ c where c ∈ N. In a similar vein, Ben-Amram
[2008] proved that for general difference constraints over the integers, i.e., constraints
of the form Xi − X ′j ≥ c where c ∈ Z, the termination problem becomes undecidable.
However for a subclass in which each target (primed) variable might be constrained
only once (in each path of a multiple-path loop) the problem is PSPACE-complete.

All the above work concerns multiple-path loops. Recently, Bozga et al. [2012]
showed that (universal) termination of a single ILC loop with octagonal relations is
decidable. Petri nets and various extensions, such as reset and transfer nets, can also
be seen as multiple-path ILC loops. The termination (for a given input) of place/transi-
tion Petri nets and certain extensions is known to be decidable [Rackoff 1978; Dufourd
et al. 1999].

A related topic that received much attention is the synthesis of ranking functions
for such loops, as a means of proving termination. Sohn and Gelder [1991] proposed a
method for the synthesis of linear ranking functions for (single path) ILC loops over
N. Later, their method was extended by Mesnard and Serebrenik [2008] to Q and to
multiple-path loops, and completeness has also been proved. The method relies on the
duality theorem of linear programming. Podelski and Rybalchenko [2004] also pro-
posed a method for synthesizing linear ranking function for ILC loops. Their method
is based on Farkas’ lemma, which has been used also by Colón and Sipma [2001] for
synthesizing linear ranking functions. It is important to note that these methods are
complete with respect to synthesizing linear ranking functions when the variables
range over R or Q, but not Z. Recently, Bagnara et al. [2012] proved that the methods
of Mesnard and Serebrenik [2008] and Podelski and Rybalchenko [2004] are actually
equivalent, in the sense that they compute the same set of ranking functions, and
that the method of Podelski and Rybalchenko can, potentially, be more efficient since
it requires solving rational constraints systems with fewer variables and constraints.
Bradley et al. [2005] presented an algorithm for computing linear ranking functions
for straight-line integer while loops with integer division.

Piecewise affine functions have been long used to describe the step of a discrete time
dynamical system. Blondel et al. [2001] considered systems of the form x(t + 1) =
f(x(t)) where f is a piecewise affine function over Rn (defined by rational coefficients).
They show that some problems are undecidable for n ≥ 2, in particular, whether all
trajectories go through 0 (the mortality problem). This can be seen as termination of
the loop while x 6= 0 do x := f(x).

9. CONCLUSION
Motivated by the increasing interest in the termination of integer loops, we have stud-
ied the hardness of termination proofs for several variants of such loops. In particular,
we have considered straight-line while loops, and integer linear-constraint loops. The
latter are very common in the context of program analysis.

For straight-line while loops, we have proved that if the underlying instruction set
allows the implementation of a simple piecewise linear function, namely the step func-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

On the Termination of Integer Loops A:21

tion, the termination problem is undecidable. For integer linear-constraint loops, we
have shown that allowing the constraints to include a single arbitrary irrational num-
ber makes the termination problem undecidable. For the case of integer constraint
loops with rational coefficients only, we could simulate a Petri net. This result pro-
vides interesting lower bounds on the complexity of the termination, and other related
problems, of ILC loops. For example, since marking equivalence (equality of the sets
of reachable states) is undecidable for Petri nets [Hack 1976; Esparza and Nielsen
1994; Jançar 1995], it follows that equivalence (in terms of the reachable states) of
two ILC loops with given initial states is also undecidable, which in turn implies that
the reachable states of an ILC loop are not expressible in a logic where equivalence is
decidable.

We hope that our results shed some light on the termination problem of simple inte-
ger loops and perhaps will inspire further progress on the open problems.

Acknowledgement
We thank Pierre Ganty for discussions on Petri nets. We also thank William Gasarch
for motivating us to add Section 7.

REFERENCES
ALBERT, E., ARENAS, P., GENAIM, S., PUEBLA, G., AND ZANARDINI, D. 2007. Costa: Design and imple-

mentation of a cost and termination analyzer for java bytecode. In Formal Methods for Components and
Objects, FMCO’07, F. S. de Boer, M. M. Bonsangue, S. Graf, and W. P. de Roever, Eds. Lecture Notes in
Computer Science Series, vol. 5382. Springer, 113–132.

BAGNARA, R., MESNARD, F., PESCETTI, A., AND ZAFFANELLA, E. 2012. A new look at the automatic syn-
thesis of linear ranking functions. Inf. Comput. 215, 47–67.

BEN-AMRAM, A. M. 2008. Size-change termination with difference constraints. ACM Trans. Program. Lang.
Syst. 30, 3.

BEN-AMRAM, A. M. 2010. Size-change termination, monotonicity constraints and ranking functions. Logi-
cal Methods in Computer Science 6, 3.

BEN-AMRAM, A. M. 2011. Monotonicity constraints for termination in the integer domain. Logical Methods
in Computer Science 7, 3.

BEN-AMRAM, A. M. AND CODISH, M. 2008. A SAT-based approach to size change termination with global
ranking functions. In Tools and Algorithms for the Construction and Analysis of Systems, TACAS’08,
C. Ramakrishnan and J. Rehof, Eds. Lecture Notes in Computer Science Series, vol. 5028. Springer,
46–55.

BEN-AMRAM, A. M., GENAIM, S., AND MASUD, A. N. 2012. On the termination of integer loops. In Veri-
fication, Model Checking, and Abstract Interpretation, VMCAI’12, V. Kuncak and A. Rybalchenko, Eds.
Lecture Notes in Computer Science Series, vol. 7148. Springer, 72–87.

BEN-AMRAM, A. M. AND LEE, C. S. 2007. Program termination analysis in polynomial time. ACM Trans.
Program. Lang. Syst. 29, 1.

BLONDEL, V. D., BOURNEZ, O., KOIRAN, P., PAPADIMITRIOU, C. H., AND TSITSIKLIS, J. N. 2001. Deciding
stability and mortality of piecewise affine dynamical systems. Theor. Comput. Sci. 255, 1-2, 687–696.

BOZGA, M., IOSIF, R., AND KONECNÝ, F. 2012. Deciding conditional termination. In Tools and Algorithms
for the Construction and Analysis of Systems, TACAS’12, C. Flanagan and B. König, Eds. Lecture Notes
in Computer Science Series, vol. 7214. Springer, 252–266.

BOZZELLI, L. AND PINCHINAT, S. 2012. Verification of gap-order constraint abstractions of counter systems.
In Verification, Model Checking, and Abstract Interpretation, VMCAI’12, V. Kuncak and A. Rybalchenko,
Eds. Lecture Notes in Computer Science Series, vol. 7148. Springer, 88–103.

BRADLEY, A. R., MANNA, Z., AND SIPMA, H. B. 2005. Termination analysis of integer linear loops. In
Concurrency Theory, CONCUR 2005, M. Abadi and L. de Alfaro, Eds. Lecture Notes in Computer Science
Series, vol. 3653. Springer, 488–502.

BRAVERMAN, M. 2006. Termination of integer linear programs. In Computer Aided Verification, CAV’06,
T. Ball and R. B. Jones, Eds. Lecture Notes in Computer Science Series, vol. 4144. Springer, 372–385.

BRUYNOOGHE, M., CODISH, M., GALLAGHER, J. P., GENAIM, S., AND VANHOOF, W. 2007. Termination
analysis of logic programs through combination of type-based norms. ACM Trans. Program. Lang.
Syst. 29, 2.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Ben-Amram et al.

CODISH, M., LAGOON, V., AND STUCKEY, P. J. 2005. Testing for termination with monotonicity constraints.
In International Conference on Logic Programming, ICLP’05, M. Gabbrielli and G. Gupta, Eds. Lecture
Notes in Computer Science Series, vol. 3668. Springer, 326–340.

COLÓN, M. AND SIPMA, H. 2001. Synthesis of linear ranking functions. In Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS’01, T. Margaria and W. Yi, Eds. Lecture Notes in Computer
Science Series, vol. 2031. Springer, 67–81.

COOK, B., PODELSKI, A., AND RYBALCHENKO, A. 2006. Termination proofs for systems code. In Program-
ming Language Design and Implementation, PLDI’06, M. I. Schwartzbach and T. Ball, Eds. ACM, 415–
426.

DUFOURD, C., JANCAR, P., AND SCHNOEBELEN, P. 1999. Boundedness of reset p/t nets. In International
Colloquium on Automata, Languages and Programming, ICALP’99, J. Wiedermann, P. van Emde Boas,
and M. Nielsen, Eds. Lecture Notes in Computer Science Series, vol. 1644. Springer, 301–310.

ESPARZA, J. 1998. Decidability and complexity of Petri net problems—an introduction. In Lectures on Petri
Nets, Vol. I: Basic Models, W. Reisig and G. Rozenberg, Eds. Lecture Notes in Computer Science Series,
vol. 1491 (Volume I). Springer-Verlag (New York), Dagstuhl, Germany, 374–428.

ESPARZA, J. AND NIELSEN, M. 1994. Decidability issues for petri nets. Tech. Rep. RS-94-8, BRICS, Depart-
ment of Computer Science, University of Aarhus.

GIESL, J., RAFFELSIEPER, M., SCHNEIDER-KAMP, P., SWIDERSKI, S., AND THIEMANN, R. 2011. Auto-
mated termination proofs for haskell by term rewriting. ACM Trans. Program. Lang. Syst. 33, 2, 7.

GIESL, J., THIEMANN, R., SCHNEIDER-KAMP, P., AND FALKE, S. 2004. Automated termination proofs with
aprove. In Rewriting Techniques and Applications, RTA’04, V. van Oostrom, Ed. Lecture Notes in Com-
puter Science Series, vol. 3091. Springer, 210–220.

HACK, M. 1976. Decidability questions for Petri nets. Technical Report MIT/LCS/TR-161, Massachusetts
Institute of Technology. June.

JANÇAR. 1995. Undecidability of bisimilarity for Petri nets and some related problems. Theoretical Com-
puter Science 148, 2, 281–301. Selected Papers of the Eleventh Symposium on Theoretical Aspects of
Computer Science.

KURTZ, S. A. AND SIMON, J. 2007. The undecidability of the generalized Collatz problem. In Theory and
Applications of Models of Computation, TAMC’07, J.-Y. Cai, S. B. Cooper, and H. Zhu, Eds. Lecture
Notes in Computer Science Series, vol. 4484. Springer, 542–553.

LEE, C. S., JONES, N. D., AND BEN-AMRAM, A. M. 2001. The size-change principle for program termi-
nation. In Symposium on Principles of Programming Languages, POPL’01, C. Hankin and D. Schmidt,
Eds. ACM, 81–92.

LINDENSTRAUSS, N. AND SAGIV, Y. 1997. Automatic termination analysis of Prolog programs. In Interna-
tional Conference on Logic Programming, ICLP’97, L. Naish, Ed. MIT Press, 64–77.

LINDENSTRAUSS, N., SAGIV, Y., AND SEREBRENIK, A. 1997. Termilog: A system for checking termination
of queries to logic programs. In Computer Aided Verification, CAV’97, O. Grumberg, Ed. Lecture Notes
in Computer Science Series, vol. 1254. Springer, 444–447.

LIPTON, R. J. 1976. The reachability problem requires exponential space. Tech. Rep. 63, Yale University.
MATIYASEVICH. 2000. Hilbert’s tenth problem: What was done and what is to be done. In Hilbert’s Tenth

Problem: Relations with Arithmetic and Algebraic Geometry, AMS, 2000, Denef, Lipshitz, Pheidas, and
V. Geel, Eds.

MEHLHORN, K. AND SCHIRRA, S. 2001. Exact computation with leda real—theory and geometric applica-
tions. Symbolic Algebraic Methods and Verification Methods 379, 163–172.

MEMMI, G. AND ROUCAIROL, G. 1980. Linear algebra in net theory. In Net Theory and Applications,
W. Brauer, Ed. Lecture Notes in Computer Science Series, vol. 84. Springer Berlin / Heidelberg, 213–
223.

MESNARD, F. AND SEREBRENIK, A. 2008. Recurrence with affine level mappings is p-time decidable for
clp(r). TPLP 8, 1, 111–119.

MEYER, R. R. 1975. Integer and mixed-integer programming models: General properties. Journal of Opti-
mization Theory and Applications 16, 191–206.

MINSKY, M. L. 1967. Computation: finite and infinite machines. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA.

PODELSKI, A. AND RYBALCHENKO, A. 2004. A complete method for the synthesis of linear ranking func-
tions. In Verification, Model Checking, and Abstract Interpretation, VMCAI’04, B. Steffen and G. Levi,
Eds. Lecture Notes in Computer Science Series, vol. 2937. Springer, 239–251.

RACKOFF, C. 1978. The covering and boundedness problems for vector addition systems. Theoretical Com-
puter Science 6, 2, 223–231.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

On the Termination of Integer Loops A:23

REISIG, W. 1985. Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, Berlin, Germany.

SHOENFIELD, J. R. 1993. Recursion Theory. Springer-Verlag, Berlin.
SOHN, K. AND GELDER, A. V. 1991. Termination detection in logic programs using argument sizes. In

Symposium on Principles of Database Systems, PODS’91, D. J. Rosenkrantz, Ed. ACM Press, 216–226.
SPOTO, F., MESNARD, F., AND PAYET, É. 2010. A termination analyzer for java bytecode based on path-

length. ACM Trans. Program. Lang. Syst. 32, 3.
TIWARI, A. 2004. Termination of linear programs. In Computer Aided Verification, CAV’04, R. Alur and

D. Peled, Eds. Lecture Notes in Computer Science Series, vol. 3114. Springer, 387–390.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

