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Abstract

In the theory of discrete-time dynamical systems one studies the limiting be-
haviour of processes defined by iterating a fixed function f over a given space. A
much-studied case involves piecewise affine functions on Rn. Blondel et al. (2001)
studied the decidability of questions such as global convergence and mortality for
such functions with rational coefficients. Mortality means that every trajectory
(namely a sequence x0, f(x0), f(f(x0)), . . . ) includes a 0; if the iteration is imple-
mented as a loop while (x 6= 0) x := f(x), mortality means that the loop is
guaranteed to terminate. Checking the termination of simple loops (under vari-
ous restrictions of the guard and the update function) is a much-studied topic in
automated program analysis.

Blondel et al. proved that the problems are undecidable when the state space
is Rn (or Qn), and the dimension n is at least two. From a program analysis (and
discrete computability) viewpoint, it is more natural to consider functions over the
integers.

This paper establishes (un)decidability results for the integer setting, while
strengthening results for the continuous setting. We show that also over integers,
undecidability begins at two dimensions. In both settings, we shown Π0

2 com-
pleteness. We further investigate the effect of several restrictions on the iterated
functions. Specifically, we consider bounding the size of the partition defining f ,
and restricting the coefficients of the linear components. In the decidable cases,
we give complexity results: The problem is PSPACE-complete for piecewise-affine
functions in one dimension; it is polynomial-time for affine functions in any dimen-
sion. The undecidability proofs use some variants of the Collatz problem, which
may be of independent interest.

1 Introduction

In the context of this paper, an (n-dimensional) discrete-time dynamical system on a
set X is defined by xt+1 = f(xt), where f : X → X. For a given initial point x0, the
sequence so generated (sometimes denoted by f (t)(x0)) is called a trajectory, and some
of the central problems regarding such systems involve the asymptotic properties shared
by all trajectories of the system. Three such properties, on which we shall focus, are
called global convergence, mortality and global convergence to a fixed point. A class of
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functions much studied in the Dynamical System literature is piecewise affine functions
(its precise definition appears in Section 1.3). The purpose of this paper is to study
the complexity of deciding the above-named asymptotic properties for piecewise affine
functions over the integers. The next subsection states what these problems are exactly,
what has been known about them (forming the departure point of this study) and what
the new contributions are.

1.1 The problems studied, known and new results

The asymptotic properties studied in this work are global convergence, mortality and
global convergence to a fixed point.

Definition 1.1. Let f be an arbitrary map on a metric space X with distinguished
origin 0.
f is globally convergent to zero if for every initial point x0 ∈ X, the trajectory xt+1 =
f(xt) converges to 0 (the words “to zero” and sometimes “globally” may be omitted in
the sequel, as long as no confusion can arise).
f is mortal if for every initial point x0 ∈ X, the trajectory xt+1 = f(xt) reaches the
origin (i.e., ∃t ≥ 0 : xt = 0).
f is globally convergent to a fixed point if for every initial point x0 ∈ X, the trajectory
xt+1 = f(xt) reaches a fixed point of f (i.e., ∃t ≥ 0 : f(xt) = xt).

Decidability of the first two problems was studied by Blondel et al. [9]. They consid-
ered piecewise affine functions f , where the coefficients are all rational (this is important
since we are considering computability in the traditional, discrete sense). The domain of
the functions is defined as Rn, though in this particular case, results would not be differ-
ent if it were restricted to Qn (there are problems where such a restriction is significant,
even when studying functions with rational coefficients; e.g., [14]).

THEOREM 1.2. [9] The following problems are undecidable for all n ≥ 2: Given a
piecewise affine function f : Rn → Rn (with rational coefficients), is it globally conver-
gent? Is it mortal?

Global convergence and mortality1 are decidable for n = 1 when the function is
continuous.

The domain of the functions can be restricted to [0, 1]n.
Global convergence to a fixed point is discussed by Koiran et al. [38], who note that

the simulation of Turing machines by two-dimensional dynamical systems leads to an
undecidability result. They do not provide a result on one-dimensional systems.

Among the many decision problems studied for dynamical systems, mortality and
convergence to a fixed point are perhaps the most appealing in their discrete setting,
since they are the halting problems for very simple types of programs (more on the
connection to program termination problems below). The global convergence problem

1The statement in [9] regarding the one-dimensional case omits mortality. However, it is easy to see
that a decision procedure for mortality follows, see Section 3.1.

2



Q2 Z2 N2

PAF without fur-
ther restrictions

Π2
0-complete

(for continous
functions, open)

Π2
0-complete Π2

0-complete

PAF with a
restriction on
the number of
regions

as for Z2 Π2
0-complete for

N regions, where
N ' 7000

as for Z2

Coefficient-
restricted PAF

Π2
0-complete for

nearly-monic
functions

Π2
0-complete for

monic functions
decidability for
monic functions
is open

Table 1: Summary of main results on mortality of 2-dimensional piecewise-affine func-
tions (abbreviated PAF). For integers, the complexity of global convergence (to 0 or to
any fixed point) is the same as that of mortality, while for the rationals these problems
are at least as hard. Monic functions are just one kind of coefficient-restricted PAF, see
Section 2.4 for further discussion.

as defined above is very closely related (in a discrete setting, a sequence xt converges
to 0 if and only if it is eventually constantly zero).

The main contribution of this paper is to establish for the integer setting results
similar to Theorem 1.2. The proofs in [9] do not apply to this setting, since they
are based on encoding the state of a computation (say, a Turing-machine tape) in the
fractional digits of a number; unlimited precision is essential. To handle a discrete (or
limited precision) setting, different proof techniques are necessary. As in the continuous
case, we obtain decidability for one dimension and undecidability for two or more. The
new undecidability result is stronger than the one in [9] in that it is achieved for a class
of functions where there is a fixed bound on the number of regions in the partition
defining f ([9] left this question open). Furthermore, we prove Π0

2 completeness, which
is a sharper result than mere undecidability. Since our results are also applicable to the
rationals, we obtain an improvement of the characterization in [9].

Next, we consider some other restrictions on the space of functions. Restriction of the
number of regions is discussed in Sections 2.2 and 2.3. Section 2.4 shows undecidability
for monic functions—these are two-dimensional functions of a very simple form, f(~x) =
f(x1, x2) = (xi1 + b1, xi2 + b2). The precise definition of the class is quite important for
the result. Some variants will be discussed in Section 2.4.5 (but mostly leading to open
problems). Table 1 summarises the results on 2-dimensional piecewise-affine functions
and indicates some open problems; for details, additional results and open problems see
the corresponding sections.

Sections 3–4 present decidability results: first we show that the special case where
there is only one region (that is, f is affine) is decidable (in PTIME) in any dimension.
Secondly, that the one-dimensional piecewise-affine case is PSPACE-complete. The final
section, Section 5, reviews the contributions of this paper, and discusses some related
directions that have not been pursued in this work.
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1.2 Background and motivation

Here are a few comments on the background to this research. The connection of Dynam-
ical System Theory to the Theory of Computation is obvious—any traditional model of
computation is a discrete-time dynamical system. However, most literature in Dynami-
cal System Theory refers to a continuous state-space, whereas in the Theory of Compu-
tation, most models are discrete (but analog models are studied and cross-fertilization
with Dynamical System Theory is evident; see for example [54]).

Taking classical (discrete) computability to continuous dynamics, Moore [47] dis-
cusses the significance of undecidability (in the Turing sense) to dynamical systems.
He shows that a Turing machine can be simulated by a piecewise-affine map on the
plane—the method is quite similar to the one used by Blondel et al. He concludes that
for such a map, the set of points on which the sequence converges (to a particular zone)
is not recursive. Koiran, Cosnard, and Garzon showed that such simulations can be
done in two dimensions, but not in one [38]. Blondel and Tsiklitis [10] survey applica-
tions of Discrete Computability and Complexity to dynamical systems, including the
above-cited results.

The author’s interest in the mortality problem and its variants arose from their
interpretation as special cases of the program termination problem (the latter term
often refers to termination for any input, that is, a global property as those studied
here). Note that the mortality problem can be seen as a question on the termination
of the loop while (x 6= 0) x := f(x), and global convergence to a fixed point asks
about the termination of the “fixed-point seeking” loop while (f(x) 6= x) x := f(x).
In fact, the pattern of “iterate until stable” (rather than until a known value, such as
0, is reached) is ubiquitous in Computer Science and the problem of termination is of
obvious interest.

Decision procedures for the termination of simple loops, where a fixed (loop-free)
computation is iterated until an end-condition is met, have gained much interest in
program analysis and several heuristic approaches have been proposed (e.g., various
constructions of ranking functions [6, 13, 19, 52]). Note that these works concentrate
on integer data, and on functions which are linear, piecewise linear, or defined by linear
constraints (which is a wider class). In [58], Tiwari draws on inspiration from Dynamical
System Theory to solve a termination problem for loops with an affine-linear update
function—however, over the reals. Consequently, Braverman [14] tackled the problem
for the rationals and integers. Passing from the real-number world to the integers is
sometimes quite a challenge as the theory of integers has many surprises of its own.
A notorious example is the solution of multivariate polynomial equations—or, more
generally, quantifier elimination—decidable for the reals [57], but not for integers [62].
Another classical example of an integer-specific problem is the Collatz problem (or
“3x + 1 problem”) [41]. Lagarias’ excellent volume shows clearly that this problem is
related both to Dynamical System Theory and to Computability Theory. Regarding
Computability, Conway [20, 21] and several subsequent works [37, 16, 24, 43, 40] proved
undecidability results for generalised Collatz problems by showing how to simulate a
counter machine. We shall make essential use of this idea, building on the reductions
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in [40], which were the only ones (known to the author) to derive Π0
2 hardness of a

mortality problem. Novel variations of the constructions will be presented in order to
obtain stronger results (hardness of mortality for restricted classes of functions).

For completeness, we should also mention the works on dynamics of algebraic or
rational maps over the integers (or more general number fields), e.g., [55]. These repre-
sent a different direction of transferring dynamical-system style problems to a discrete
setting. There are kinds of dynamical systems even more remote from our subject,
which the interested reader may find in (e.g.) Brin and Stuck’s book [15]. There is also
a decision problem called “mortality” which is quite different from our problem; it deals
with a set of matrices, and asks whether the zero matrix is a product of some sequence
of matrices from this set. See [50, 33, 3]. One may phrase the essence of the difference
between the problems in that our mortality problem ask whether all trajectories lead
to zero, while their problem asks whether there is a trajectory leading to zero (in a sort
of non-deterministic dynamical system).

Part of this work has been previously presented at STACS 2013 [5].

1.3 Preliminary definitions

A closed (respectively open) half-space of Rn is the set defined by {~x ∈ Rn : c~x+d ≥ 0}
(respectively > 0) where c ∈ Rn, d ∈ R. We are interested in rational half-spaces,
where the components of c, d are rational. A (rational) convex polyhedral region is the
intersection of a finite number of (closed or open) half-spaces, which we sometimes call
the constraints.

Definition 1.3. A piecewise affine function (PAF) on Rn (respectively Zn) is a function
defined by

f(~x) = Ai~x+ bi for ~x ∈ Hi (respectively, Hi ∩ Zn) (1)

where the sets H1, . . . ,Hp are an exhaustive partition of Rn into p convex rational
polyhedral regions, and for i = 1, . . . , p, Ai ∈ Qn×n and bi ∈ Qn (respectively, Zn×n and
Zn).

The restriction to convex regions is somewhat arbitrary, but follows the definition
in [9] and other related publications. Section 2.2 discusses an implication of this re-
striction (and proposes a relaxation). If f maps Nn into Nn, we can speak of mortality
over the naturals. While this research initially focused on Zn, comments about the
natural-number setting have been added (thanks to a suggestion by a referee).

We use the notation [a, b] for an interval of integers, namely {a, a+ 1, . . . , b}.

Counter Machines The counter machine model, due to Minsky [46], is well known.
The details of the definition vary in the literature, but the differences are rarely essen-
tial. The following description conforms (up to non-critical details) with [9]. A counter
machine M is specified by the number n of registers and the number ` of internal (con-
trol) states, plus a list of instructions. An instruction is an (2n+ 2)-tuple [i, β1, . . . , βn,
D1, . . . , Dn, k] where 1 ≤ i ≤ ` is the internal state number, βj ∈ {Z,P} represents
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whether register Rj is Zero or Positive, Dj is either +1, −1 or 0 and represents the
change to Rj , and k is the new internal state, or 0, which signifies halting. Instructions
have to be valid: they never decrement a null register. A configuration of the machine
is written as (i, 〈r1, . . . , rn〉) where i is the internal state and rj the contents of Rj .
The machine is assumed to be deterministic, meaning that exactly one instruction is
enabled at any configuration. State 1 is the initial state of the machine. Note that
the machine does not receive any input while computing, so when used to compute a
function, the argument is supposed to be present in some register upon commencement
say R1; the initial configuration for input x is thus (1, 〈x, 0, . . . , 0〉). Occasionally, one
considers functions of k arguments, which are supplied in the first k registers.

Since counter machines in themselves are not our goal, we grant ourselves, in some
constructions, the convenience of using a slightly stronger computational model, namely
the enhanced counter machine defined next.

Definition 1.4. An enhanced CM is a counter machine, as specified in Section 1, except
that in an instruction [i, β1, . . . , βn, D1, . . . , Dn, k], each Dj component is an integer in
[−1,∞), which is added to Rj . Hence, an increase to the value of a register can be any
positive constant.

The class Π0
2.

Definition 1.5. Π0
2 is the class of decision problems that can be expressed by a formula

of the form (∀z)(∃y)P (x, y, z) with P recursive.

This class properly contains Σ0
1 (characterised by formulas (∃y)P (x, y)), also known

as RE or the recursively enumerable problems (sometimes called computationally enu-
merable). Standard Π0

2-complete sets are the totality problems (termination on all
inputs) for Turing-equivalent machines, such as counter machines. Kurtz and Simon
extended the hardness result to mortality of counter machines, in the following sense:

Definition 1.6. For a class of deterministic abstract machines (equivalently, programs
with an operational semantics), the mortality problem is the problem of deciding, given
such a machine (or program), whether it is the case that for every configuration C in
the configuration-space of this machine (or program), its computation from C is finite
(i.e., reaches a halting configuration).

For example, given a counter machine as described above, the question is whether the
computation from any configuration (i, 〈r1, . . . , rn〉) leads to halting; the computation
is unique because the machine is deterministic. Note the difference from the totality
problem, which only concerns halting for all input values—i.e., halting of computations
from initial configurations (1, 〈x, 0, . . . , 0〉).

While undecidability of totality is a basic result in computability that applies to
all computational models effectively equivalent to a Turing machine, undecidability
(let alone Π0

2-completeness) of mortality is non-trivial to prove since many programs,
while halting from all initial states, still diverge if started in a configuration that is not
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reachable in a proper computation.2 For Turing machines, Hooper [35] and Herman [34]
proved the undecidability of mortality (under two different definitions of the state space).
Kurtz and Simon proved the following

THEOREM 1.7 ([40]). The mortality problem for counter machines (CMs) with n ≥ 2
counters is Π0

2-complete.

2 Undecidability in Two Dimensions

This section is dedicated to undecidability results. The first subsection proves results
corresponding to the undecidability results of Blondel et al.—but over the integers,
and proving Π0

2 hardness. The next subsections discusses the question: do certain
restrictions on the space of functions turn the problems to decidable ones? First, we
consider constant bounds on the number of regions, and similar parameters. Next, we
consider severe restrictions on the coefficients of the functions, defining the class of
monic functions and proving undecidability for this class. This also yields a new result
for functions over the rational numbers (Theorem 2.24).

2.1 The general case

Blondel et al. prove the undecidability results by reducing from the mortality problem for
counter machines. This reduction encodes counter-machine states in rational numbers,
making essential use of fractions 2−n in representing a counter of value n (there are a
few other constructions in the literature which use a similar encoding). For the integer
setting, we need a more integer-oriented technique. In [40], Kurtz and Simon reduce
the CM mortality problem to a Generalised Collatz Problem. We shall use this problem
to prove our result for piecewise affine functions.

The definition below is based on [40], with a non-essential modification for conve-
nience in the sequel.

Definition 2.1. A function g : N+ → N+ is called a generalised Collatz function if
there is an integer m > 0, positive integers {a0, . . . , am−1} and non-negative integers
{b0, . . . , bm−1}, such that whenever x ≡ i mod m, g(x) = ai(x− i)/m+ bi.

A standard representation of g is the list m, a0, b0, . . . , am−1, bm−1 (in binary nota-
tion).

The standard Collatz function is usually described by g(x) = 3x+ 1 if x is odd, g(x) =
x/2 if x is even (the Collatz conjecture is that the trajectories of this function all reach
1). In our notation, g is given by m = 2, a0 = 1, b0 = 0, a1 = 6, b1 = 4.

Definition 2.2. GCP (for Generalised Collatz Problem) is the problem of deciding,
from a standard representation of g, whether every trajectory of g reaches 1.

THEOREM 2.3. [40] GCP is Π0
2-complete.

2An anecdotal evidence of this difference is that for Petri nets, halting is EXPSPACE-complete [25,
42, 8, 23], while mortality is PTIME [45, 26].
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Note that the GCP is really a mortality problem (with the end-state defined as 1
instead of 0), but the functions considered in the GCP are not piecewise affine; their ex-
pression involves division and remainders, which make it easier to encode computations
and simulate counter machines.

Our first result is

THEOREM 2.4. Global convergence, mortality and global convergence to a fixed point
of piecewise affine functions with integer coefficients over Z2 (or N2) are Π0

2-complete
problems.

Proof. Like the GCP, mortality and convergence (to zero) are clearly “∀∃” problem, as
they can be formulated as follows: for all ~x ∈ Z2, there is an n such that fn(~x) = 0.
For global convergence to a fixed point, we formulate it as: for all ~x ∈ Z2, there is
an n such that fn(~x) = fn+1(~x). Hence, all these problems clearly belong to Π0

2. For
Π0

2-hardness, we reduce from the GCP.
Given a description 〈m, a0, b0, . . . , am−1, bm−1〉 of a generalised Collatz function g,

our reduction produces the function f defined by the following table, where for conve-
nience every region has a label.

region label constraints f(x, y)

D x≥m+ 1 , y ≥ 0 (x−m, y + 1)

R0 x = 0 , y ≥ 1 (a0y + b0, 0)

R1 x = 1 , y ≥ 1 (a1y + b1, 0)

R2 x = 2 , y ≥ 0 (a2y + b2, 0)

...

Rm−1 x = m− 1, y ≥ 0 (am−1y + bm−1, 0)

Z elsewhere (0, 0)

To simulate a Collatz sequence generated by g, we repeatedly apply f starting
from (x0, 0). Observe that started at (x, 0) for x > 1, the computation will stay in
Region D (the division region) until obtaining the result (i, (x − i)/m) where x ≡
i mod m. Computation will then reach one of regions R0 through Rm−1 and apply the
appropriate part of g, producing (g(x), 0). This process only stops if it arrives at (1, 0),
which is the final point of the Collatz sequence and is mapped by our function to (0, 0),
our final state. For example: the standard Collatz sequence, started with x0 = 5, is
5, 16, 8, 4, 2, 1. The simulation of this computation by our two-dimensional function is
shown in Figure 1; note that the points on the x-axis correspond to the Collatz sequence
(except for the final step jumping to (0, 0)). The points above the x-axis correspond to
the process of division.

Note that every point in the regions D through Rm−1 represents an intermediate
state of a valid simulation of a g sequence, while all other points map immediately to
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Figure 1: Simulating the Collatz sequence from x = 5 (the initial point is (5, 0)).

the origin. Thus, f globally converges to zero if and only if it is mortal if and only
if g satisfies the GCP. It is furthermore easy to verify that the function has no fixed
point besides the origin. Therefore, it globally converges to a fixed point if and only if
g satisfies the GCP.

We observe that this reduction also works over the rationals, which will allow us to
solve an open problem of [9] in the next subsection. More precisely:

OBSERVATION 2.5. Function f as constructed in the last proof is mortal over the
rationals if and only if it is mortal over the integers.

Proof. It is clear that if f is not mortal over the integers, it is not mortal over the
rationals. In the other direction, suppose that f is mortal over integers. We consider a
trajectory that starts with a point (x, y) where at least one of x, y is non-integral. We
have the following cases:

1. (x, y) ∈ Z. In this case it is mapped to (0, 0).

2. (x, y) ∈ D and x is integral and y is not, the trajectory inevitably leads to one of
the regions Ri, hence to the next case.

3. (x, y) is in one of the regions R0 through Rm−1. In this case the second coordinate
of f(x, y) is 0. Write f(x, y) = (x′, 0). If x′ is integral, the rest of the trajectory
is integer-valued, and presumed mortal. If x′ is non-integral, but smaller than m,
then (x′, 0) ∈ Z. Otherwise, it falls under the following case.

4. (x, y) ∈ D and x is non-integral. Then the trajectory inevitably leads to Z.

In the following sections we prove results which are strictly stronger than Theo-
rem 2.4. However some of their proofs will reuse the above reduction.
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2.2 Undecidability with a Bounded Number of Regions

The number of regions in the definition of function f above depends on the modulus m
of the Collatz function. In this section, we establish that the mortality problem is also
hard when the number of regions is bounded by some a priori constant (if it is large
enough). This will follow immediately from proving that a result like Theorem 2.3 holds
for a fixed modulus (which may be interesting in itself). For this purpose, we modify
the reductions leading up to this theorem3. In [40], the mortality problem for counter
machines is proved Π0

2-hard by reduction from the standard complete problem for this
class, the totality problem (does a given CM halt on every input?). Then, CM mortality
is reduced (via an intermediate form, called FracTran) to the GCP. The modulus of
the resulting Collatz function is determined by the size of the counter machine—more
precisely, by the number of instructions and the number of counters. For any given
bound B, mortality of counter machines whose size is bounded by B is decidable (there
are only finitely many such machines). Therefore one cannot simply impose a bound
and use the same reduction. Our proof is a new reduction that uses an extended type of
CM instructions and a universal machine (note, however, that while the halting problem
for a universal machine is undecidable, a universal machine is never mortal).

A reduction of a CM halting problem to mortality appears both in [40] and in [9].
Since the latter reduction (henceforth: the BBKPT reduction) is simpler, we will build
upon it, however with certain modifications. First, they reduce from halting on a given
input, not from totality. Secondly, we make some changes for the purpose of improving
the bounds we can give on the size of the machine, with an eye towards bounding the
modulus in the GCP.

First, we review the BBKPT reduction. Suppose that we are given a counter machine
M with n counters R1, . . . , Rn so that we are to determine if it halts on the initial state
(1, 〈r1, . . . , rn〉). They construct a machine M ′ with n+ 2 counters R1, . . . , Rn, V,W .

The machine M ′ has a special new “reset” state q0. Once M ′ enters q0, it executes
a sequence of instructions whose effect is to set R1, . . . , Rn to r1, . . . , rn respectively,
store 2V + 1 in W and 0 in V . After having done that, it moves into state 1, the
initial state of M . Note: in the BBKPT reduction, r1, . . . , rn are fixed (as input to the
reduction), so it is possible to set Ri to ri by a hard-coded sequence of increments. As
a consequence of our higher goal, to prove Π0

2 hardness and not just RE-hardness, thus
to reduce from the totality problem and not from the halting problem, we will not have
the input hard-coded. The solution will be explained below.

The operation of M ′ in the states taken from M is such that it simulates M while
also performing the following operations: for every step, it increments V and decrements
W . It only performs the next instruction of M if W > 0. If W = 0, it returns to the
reset state.

Blondel et al. show that this ensures mortality if and only if M halts on the specified
initial state. This follows from the following observations.

3Undecidability, though not Π0
2 completeness, has been shown to hold for a fixed modulus in [37, 24,

43]. Their constructions could perhaps be used to give an alternative proof of the result.
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1. For M ′ to halt, it must halt while simulating M , since the added instructions do
not halt in themselves. If M has a non-terminating computation from initial state
(1, 〈r1, . . . , rn〉), then M ′ cannot halt when starting from such state, and is not
mortal.

2. Suppose that M halts on the given state. Then, when M ′ is started with an
arbitrary initial state, one of two things can happen: either M ′ halts without
reaching a state where W = 0, or it reduces W to 0. When this happens, M ′ re-
initialises itself to start a simulation of M from (1, 〈r1, . . . , rn〉), which can run for
2V +1 steps. It will either halt, or exhaust the “budget” and re-initialise. However,
since the budget grows whenever it is re-computed, eventually the simulation of
M to its halting point will be successful.

Next, we apply this technique to a universal machine, in a way that yields a reduction
of the totality problem to morality, and moreover, for machines with a bounded number
of registers and control states.

Definition 2.6. By U we shall denote a universal CM, such that when started with a
value x in R1, and an encoding M̂ of a machine M in R2 (the choice of an encoding is
immaterial to our discussion), it simulates the computation of M when started with x
in its first register and 0 in the rest.

The notion of simulation that we need is weak in the sense that we are not interested
in output; it suffices that U halts if and only if M halts on 〈x, 0, . . . , 0〉. We can also
restrict M to any class of counter machines that is sufficiently strong to make the totality
problem Π0

2 complete; for example, two-counter machines. The details of the machines
are not very important, unless one wants to calculate certain constants explicitly. At the
request of one of the referees that have reviewed this paper, such an explicit calculation
will be given. But at this stage, we proceed with the non-specific description that should
make it easier to see the essential ideas.

Since counter machines in themselves are not our goal, we can grant ourselves the
convenience of using a slightly stronger computational model, namely the enhanced
counter machine (Definition 1.4), where a constant of any size can be added to a register
at one step.

PROPOSITION 2.7. From an (ordinary) counter machine M and a universal ma-
chine U , one can compute an enhanced counter machine UM such that UM is mortal if
and only if M halts on every initial state (1, 〈x, 0, . . . , 0〉). The number of registers and
control states of UM are independent of M .

Proof. UM is obtained by applying the BBKPT reduction to the universal machine U ,
with the following modifications. Let n be the number of registers in U . We add a
register Rn+1. It will be used to keep an input value on which we simulate M . Further,
we add two registers fulfilling the roles of V and W , as previously described. The
reset state, besides the operation already described above, will set R1, R2, . . . , Rn+1 to
Rn+1, M̂ , 0, . . . , 0 respectively. Copying Rn+1 into R1 requires a loop, of course; or,
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more precisely, two loops—one to copy Rn+1 to R1, while decrementing Rn+1; we copy
it at the same time also to an auxiliary register, say R3; the second loop recovers Rn+1

from R3. Let us call the intermediate configurations encountered during these loops
fragile, because in them, the invariant value of Rn+1 is temporarily modified.

We now claim that UM halts on all non-fragile configurations in which Rn+1 = x if
and only if M halts on initial state (1, 〈x, 0, . . . , 0〉). First, suppose that M does halt
on this initial state. When UM is started in a configuration where Rn+1 = x, which is
not fragile, the value of this register will be maintained until the machine either halts
or W is decremented down to zero. In the latter case, the reset operations prepare UM

to correctly simulate a computation of M on input x. The simulation will either halt
or time out and reset again, but since the time limit is increased each time through,
eventually the machine will halt. Conversely, suppose that M does not halt on input x;
then starting UM in the state (1, 〈x, M̂, 0, . . . , 0〉) we get a non-terminating computation.

In a fragile configuration, the value ofRn+1 is not x, as it may be partially transferred
into R1; but x can nonetheless be determined from the configuration, and besides this
subtlety, the above analysis holds.

We conclude that UM is mortal if and only if M halts for every x.

THEOREM 2.8. From a counter machine M (of the type interpreted by U), one can
compute a generalised Collatz function g that satisfies the GCP if and only if M halts
on every initial state (1, 〈x, 0, . . . , 0〉). The modulus of g depends only on the size of U ;
in particular, it is independent of M .

Proof. We first map M to UM as shown above, and then use a translation from counter
machines to generalised Collatz functions based on [20, 40], extended to represent en-
hanced CM instructions and slightly modified to reduce the modulus value. The trans-
lation represents a machine state s by an integer ŝ as follows. Each register Rk (up to
Rn+1, since we follow the numbering in the previous proof) is associated with a distinct
prime number pk. The contents of Rk are encoded as the exponent of pk in the prime-
number factorization of ŝ. Let q be the number of control states in UM (including 0,
the halting state). In what follows, we assume the states have been renumbered so that
the halting state is now number 1; this is done in order to obtain a stopping condition
that suits the GCP problem, where the sequence is supposed to end at 1. Without loss
of generality we assume that there is no other kind of halting (i.e., no control states
with missing instructions). Moreover, we add to the machine instructions from state
1 to itself, conditional on a register being non-null, which decrement it; thus the ma-
chine will truly halt only after clearing all registers. Now, we encode a configuration
s = (`, 〈r1, . . . , rn+1〉) by

ŝ = q(
∏

k≤n+1

prkk ) + ` .

The modulus m is defined to be q
∏n+1

k=1 pk, which ensures that the remainder of ŝ modulo
m determines the control state and, for every register, whether it is null. Specifically,
the control state is ŝ mod q = (ŝ mod m) mod q; to test RK for nullity, we consider
whether (ŝ mod m) is a multiple of pkq; if it is, Rk is non-null.
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Thus there is a unique instruction corresponding to each remainder i. We define the
function x 7→ ai(x− i)/m+ bi so that it implements the corresponding instruction. To
encode an instruction that adds Dk to Rk, ai is chosen to be a multiple of (pk)Dk+1.
Since m includes a pk factor, the exponent of pk will be increased by Dk. To change
the control state to r, we choose bi to make r the new remainder modulo q. To sum up,
the instruction:

[`, β1, . . . , βn+1, D1, . . . , Dn+1, r] (2)

is simulated by letting

ai = q

(
n+1∏
i=1

(pk)Dk+1

)
; bi = r ,

for each 0 ≤ i < m where i mod q = `, and (pk| bi/qc) ⇐⇒ (βk = P ).
Now, the halting state (with all registers null) is represented by x mod m = q ·1+1.

Let i = q + 1, then we let
ai = q; bi = 1 . (3)

Thus, if x ≡ i (mod m), the application of our Generalised Collatz function to x results
in

ai(x− i)/m+ bi = q(x− i)/m+ 1

which is less than x, unless x = i = q + 1; thus, simulating a halting transition triggers
a chain of descending numbers ending up at 1. The definition (3) is also applied to any
other q+1 < i < m such that i mod q = 1 and (i−1)/q is not divisible by any pk. Such
values may exist, for example, suppose that q = 4, n = 1, p1 = 2, p2 = 3; then m = 24,
and i = 21 satisfies i mod q = 1, and (i− 1)/q = 5 is indivisible by 2, 3.

As in [40], we note that we are not satisfied by the Generalised Collatz function being
able to simulate a computation of UM , but we want its global behaviour to represent
the mortality of UM ; it is therefore necessary to pay attention to the fact that some
numbers do not represent any state according to the encoding function. Those are, to
be exact, the numbers x such that bx/qc has a prime factor larger than pn+1 (let us call
it a noise prime). We should guarantee that starting from such a number will not cause
divergence. This is indeed the case for the following reason: consider such a number

x = q

(
n+1∏
i=1

(pk)rk

)
· d+ ` ,

where d is the noise factor (a product of noise primes). Simulating an instruction (2)
that applies, we reach

x′ = q

(
n+1∏
i=1

(pk)rk+Dk

)
· d+ r ,

so, in essence, the simulation is correct, maintaining the same noise factor d. We can call
it a d-trajectory of the Generalised Collatz function (note that trajectories made out of
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proper encodings form 1-trajectories). An exception is when the halting configuration
is reached; then (3) applies, so we have

x = qd+ 1

and
x′ = q · bx/mc+ 1 = q · b q

m
dc+ 1 .

If b(q/m)dc = 0, we obtain 1; otherwise, since b(q/m)dc < d, this results in a number
that belongs to an e-trajectory, for e < d; therefore the number of such events is finite
(and we must end up at 1 or at a 1-trajectory). Revisiting our example, if x = 21 (with
d = 5), then x′ = 1; if x = 45 (also with d = 5), we have x′ = 5, which is a proper
encoding (i.e., in a 1-trajectory), as 5 = q · 1 + 1.

COROLLARY 2.9. There is a constant m such that GCP restricted to modulus m is
Π0

2-complete.

Applying now the reduction in the previous section, we have

COROLLARY 2.10. There is a constant r such that global convergence, mortality
and global convergence to a fixed point of piecewise affine functions f over Z2 (or N2)
with integer coefficients and r regions are Π0

2-complete problems. This is also true for
mortality of piecewise affine functions over Q2.

It is natural to ask how large this constant bound has to be for the problems to be
undecidable. Moreover, one may expect to develop a tradeoff between the number of
regions and dimension, of the kind investigated for a number of undecidable problems,
regarding their characteristic parameters, see [44]. This is, however, a plan for future
research. Presently, we only provide an estimate on the size of the constants m and r in
the two last propositions. Then, we discuss alternative parameters for the descriptional
complexity of the function: the number of non-zero regions, and the number of defining
hyperplanes.

Bounds for the above constructions. We give some bounds for the constants m
and r appearing in the last two propositions. These bounds are probably far from lowest;
but they are not the worst that can come out of the above proof. The main factor in
the determination of the bound is the size of the machine UM . The construction of the
modulus of the GCP function in the proof of Theorem 2.8 shows that this value grows
exponentially in the number of registers, but only linearly in the number of states of
the machine. Consequently, in order to obtain a good bound, we should try to optimise
the machine mostly in terms of the number of registers.

LEMMA 2.11. The construction of Proposition 2.7 can be implemented in a way that
results in a machine of three registers and 233 control states.
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The proof of the lemma is just a lot of technical details, and is deferred to Ap-
pendix A. By setting these parameters in the proof of Theorem 2.8, we get the following
value for the modulus:

m = 233 · 2 · 3 · 5 = 6990.

The number of regions, r in the second proposition, is of a similar magnitude.
Remark: as already mentioned, in [20, 40], the construction of the GCP was slightly

different. Significantly, their modulus grows exponentially in the number of states as
well. The bound on m that followed from their construction was huge (roughly in the
order of 1035), hence the motivation to improve the construction.

Discussion The results of this section can be seen as an investigation of the question:
how complicated need the function be to make its behaviour computationally unpre-
dictable. One can come up with other measures for the descriptional complexity of
the function, for example, the size of a linear decision tree that computes the function.
Such a tree is an ordered finite binary tree each of whose internal nodes represents a
“decision”, asking for a certain affine linear function h whether h(x) > 0. Every leaf
represents a region on which the defined function is affine linear. The class of functions
defined by up to B regions, for some constant B, also has a constant bound on the size
of the decision tree (defined as the number of leaves), though the constant may differ.

As the estimate of circa 7000 regions is probably way beyond the true decidability
threshold, one can look at another indication of hardness: the connection to the 3x+ 1
problem. In fact, this problem can be encoded as a mortality problem with just three
regions (or a decision tree with four leaves), as follows (this is, essentially, an ad-hoc
implementation of the method of Theorem 2.4, economizing on regions):

f(x, y) =


(x− 2, y + 1) when x > 0

(y − 1, 0) when x = 0

(3y, 0) when x < 0 .

PROPOSITION 2.12. Function f above is mortal if and only if the Collatz conjecture
holds.

Proof. First, we note that the Collatz conjecture is equivalent to stating that any se-
quence starting from x0 ≥ 2 will reach 2. We thus simulate the sequence only for such
values, and 2 is our stopping point. By “shifting the axis,” namely representing a num-
ber x in the sequence by the point (x− 2, 0), arrival of all sequences at 2 coincides with
mortality. Also, we note that for odd x we can map it to (3x + 1)/2 (shortcutting a
step of the original sequence).

Consider a point (x− 2, 0) for x ≥ 2. We claim that iterating f leads to (x′ − 2, 0)
where x′ is the element following x in the Collatz sequence:

If x is even (and greater than 2, the case 2 is trivial),

(x− 2, 0) 7→∗ (0, (x− 2)/2) 7→ (((x− 2)/2)− 1, 0) = ((x/2)− 2, 0) .
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If x > 2 is odd,

(x− 2, 0) 7→∗ (−1, (x− 1)/2) 7→ ((3(x− 1)/2), 0) = (((3x+ 1)/2)− 2, 0) .

What about other points of the plane?

1. All points in the closed NE quadrant participate in orbits as above.

2. A point (x, 0) with x < 0 is mapped to (0, 0).

3. A point in the open SE quadrant will reach either the positive x axis (then it falls
back to case 1) or the negative y axis.

4. A point (0, y) with y < 0 is mapped to (y − 1, 0), a point on the negative x axis.

5. A point (x, y) with x < 0 and y 6= 0 is mapped to (3y, 0), which is either on the
positive x axis (hence OK) or on the negative x axis.

Here, too, f can be interpreted as a function either over Z2 or over Q2. We conclude
that, in each of these settings, by finding a decision procedure for two regions we would
get as far as possible as one can get, in terms of this parameter, without implicitly
solving the Collatz problem. A complete solution for two regions is conjectured possible
but left out of the scope of this work. For a single region the problem is settled in
Section 4.

2.3 The number of non-zero regions

Consider the function f defined in Section 2. How many regions does it have? There
are m+2 rows in the table. But the last one does not count as a single region according
to Definition 1.3. The problem is that it is not convex, and therefore has to be split in
a “meaningless” way into convex polyhedra. Suppose that we adjust the way we count
regions by allowing the function to be defined explicitly on a certain number of convex
polyhedral regions, and zero elsewhere. We can now look for the smallest number R of
defined regions (not counting the “elsewhere”) where mortality or convergence become
undecidable. Under this definition, the case R = 1 coincides with an important open
problem from the area of static program analysis, known as the termination of affine
integer loops. Such loops are defined by an affine function over a convex polyhedron,
and terminate whenever the value leaves that region. In our setting, assuming that the
region is shifted (if necessary) to exclude the origin, mortality becomes equivalent to
leaving the active region. This problem has been settled in part by Braverman [14], who
showed decidability in the homogenous case (i.e., using functions whose constant term
is zero; in other words, linear functions rather than affine-linear). For a recent progress
(solving the problem under a different restriction), see [51].

In the program-analysis context, the case R = 2 represents loops with a single “if
statement” in their bodies (where the test is a linear inequality). The termination
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problem of such loops has been recently shown to be undecidable [7]. This work does
not consider a fixed dimension. However, the undecidability proof is a reduction from
mortality of counter machines, and the dimension of the dynamical system constructed
is related to the size of the counter machine. Using Proposition 2.7, we can deduce
that undecidability (Π0

2 hardness, in fact) holds under a certain fixed bound on the
dimension.4

2.4 Undecidability for Monic Functions

The result of the last section may be interpreted as showing that the hardness of the
problem does not depend on allowing an unbounded number of regions. So, it must
come from allowing an unbounded set of possible affine functions for each region. In this
section we will show that even when restricting the coefficients in the linear components
of these functions to 1, we still have undecidability.

Definition 2.13. A monic5 piecewise affine function on Z2 is a piecewise affine function
where each of the defining affine components has the form f(~x) = (xi1 + b1, xi2 + b2),
where {i1, i2} = {1, 2}. In addition, the halfspaces which define the space partition are
given by inequalities of the form ±xi ≤ d.

The main point of this definition is to exclude multiplication by a constant, in the
form axj with a 6= 1 (or sums like x1 + x2, which can be used to quickly double a
value). The reason for this choice was that the previous reduction relied significantly on
multiplication, thus it seemed interesting to see what happens without this option. For
consistency, the option to multiply by a constant was also removed from the expressions
that define the boundaries of regions in the function’s definition. But these choices are
quite arbitrary, and one can certainly find similar phenomena when considering other
function classes, slightly more or slightly less restricted. Such variations will be discussed
in Section 2.4.5.

2.4.1 Two-counter machines

In this proof we will use 2-counter machines (2CM). A 2CM is a counter machine as
previously described, just with two counters.

LEMMA 2.14. 2CM mortality is Π0
2-complete.

Proof. Blondel et al. [9] show that Minsky’s well-known translation of n-counter ma-
chines to 2CM preserves mortality. Combining this with the Π0

2-completeness result of
Kurtz and Simon [40], we obtain the lemma.

4Some back-of-the envelope calculations in the style of those leading to Lemma 2.11 suggest a bound
in the order of a few hundreds. The tedious calculation has not been carried out in full. This may be
far from the true edge of decidability, suggesting a problem for further research.

5Usually, a “monic polynomial” is univariate. Our definition requires each coordinate of the result
to be a univariate monic linear function of one of the variables.
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It will be useful to restrict the machines under consideration to a certain class of
“normal forms”, as described in the following proposition.

LEMMA 2.15. Every 2-counter machine M can be effectively transformed into a ma-
chine M ′ such that M ′ is mortal if and only if M is, and, in addition,

1. In every transition of M ′, all the components Dj are non-zero. That is, all regis-
ters are modified.

2. Whenever control is transferred to the halting label, 0, the values of the counters
are either 〈0, 0〉, 〈0, 1〉 or 〈1, 0〉.

We shall call such a machine normalised.

Proof. Arranging for (1) to hold is done by increasing the number of control states,
so that as M ′ is simulating M , the value of each register may deviate by 1 from its
value in M ; the deviation is recorded in the finite control. We also record, in the finite
control, information on whether the counter is currently null (in the simulated state).
The deviation will, in general, be 0 or −1 (that is, the value of the M ′ register may be
one less than the simulated register), except when the simulated register is null, where
the M ′ register may be set to 1, to maintain the goal of always modifying the register.

To verify this idea in more detail, we present in Table 2 the translation applied to a
single-register machine. The construction for a two-register machine consists of apply-
ing the translation, independently, to both parts of each instruction. In the translation
showed, each original state i becomes a set of states i(d) where d ∈ {−1, 0, 1} repre-
sents the deviation of the M ′ register from the simulated regiseter. Note that certain
situations cannot arise in a simulation; specifically, a state i(1) cannot be entered unless
the counter is null. To preserve mortality, besides translating the instructions of M
according to the table, we also add instructions to map the “invalid” configurations to
the halting state.

For part (2) of the lemma, a halting transition is changed into a transition into
a new set of states that (almost) empty the counters (one cannot always nullify both
counters because of (1)).

2.4.2 Compass Collatz-like functions

The proof will use a specially-adapted variant of the Collatz problem, presented next
(the definition may seem a little forced; keep in mind that it was conceived as a tool for
reductions). In describing this kind of Collatz-like function we will make use of the set
C = {E,N,W, S} of Compass Directions. A pair (x,∆), where x ∈ N, may be depicted
as a point on one of the axes in the Cartesian plane, in the direction ∆ (we may also
refer to such a point as lying on the ∆ axis). We refer to it as a compass point.

A Compass Collatz-like function, defined next, differs from the previously-used gen-
eralised Collatz function in several respects. First, it operates on compass points. Con-
sequently, the definition of f(x,∆) is split into cases both according to the direction
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Original instruction Translation

[i, Z, 1, k] [i(0), Z, 1, k(0)],

[i(1), P,−1, k(−1)]

[i, Z, 0, k] [i(0), Z, 1, k(1)]

[i(1), P,−1, k(0)]

[i, P, a, k], a 6= 0 [i(0), P, a, k(0)]

[i(−1), P, a, k(−1)]

[i(−1), Z, 1, k(−a)]

[i, P, 0, k] [i(0), P,−1, k(−1)]

[i(−1), P, 1, k(0)]

[i(−1), Z, 1, k(0)]

Table 2: modifying instructions to ensure the counter is always modified.

component ∆, and according to the remainder of the integer x modulo a certain number
m. However, we do not specify the function by listing its action for every conjugacy
class modulo m, because our functions operate quite uniformly, so in fact the specifi-
cation requires less data than the specification of a generalised Collatz function of the
same modulus. For points in the North and South directions, the action is expressed
by a single, simple formula; for points in the East and West directions, the conjugacy
classes are split between two formulas, so a description of the function includes listing
the sets of remainders that are handled by each of the formulas. The formal definition
follows; Figure 2 is a pictorial representation.

Definition 2.16. A function g : N+ × C → N+ × C is called a Compass Collatz-like
function if there is a number m = 6p with p ≥ 5 a prime, sets RN , RS ⊆ [0,m − 1]
and integers wi ∈ [0,m − 1] for i = 0, . . . ,m − 1, such that g satisfies the following
equations (for convenience we represent its argument in the form mx + rp + i, where
x ≥ 0, 0 ≤ r < 6 and 0 ≤ i < p):

g(mx+ rp+ i, E) =

{
(mx+ rp+ i,N) rp+ i ∈ RN

(4(mx+ rp) + i,N) rp+ i /∈ RN

g(mx+ rp+ i,N) = (
1

2
mx+ b1

2
rc · p+ i,W )

g(mx+ rp+ i,W ) =

{
(mx+ rp+ wrp+i, S) rp+ i ∈ RS

(9(mx+ rp) + wrp+i, S) rp+ i /∈ RS

g(mx+ rp+ i, S) = (
1

3
mx+ b1

3
· rcp+ i, E)

(4)

As an example, let p = 5, so m = 30, and let us compute g(42, S). First, we write
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Figure 2: The dynamics of a Compass Collatz-like function.

42 = m+ 2p+ 2. Then, by definition,

g(42, S) = (
1

3
m+ b2

3
cp+ 2, E) = (10 + 0 + 2, E) = (12, E) .

Next, consider g(42, E): here we branch according to the remainder modulo m, namely
12. If 12 ∈ RN , we have g(42, E) = (42, N), while if 12 /∈ RN , then g(42, E) =
(4 · 40 + 2, N) = (162, N).

The function could be represented as an ordinary generalised Collatz function by
encoding the “direction” in the remainder modulo a prime q 6= 2, 3, p, replacing m = 6p
by 6pq. For every congruence class modulo 6pq, the function is then linear. The “com-
pass” representation is useful for the transition to a 2-dimensional dynamical system
(and also makes it easier to visualise the dynamics). Another “twist” that makes the
next proof easier is the definition of the final zone, below, as the set {(x,E) | x < m}
rather than just the point 1.

Definition 2.17. CCP (for Compass Collatz-like Problem) is the problem of deciding,
given g, whether every g-trajectory eventually reaches the final zone {(x,E) | x < m}.

LEMMA 2.18. CCP is Π0
2-complete.

Proof. We reduce from 2CM mortality. Given a normalised 2-counter machine M
(Lemma 2.15), we show how to simulate it by a Compass Collatz-like function.

Let m = 6p where p ≥ 5 is a prime such that the number of internal states of M is
p − 1 (there is no loss of generality, since extra states can always be added). The idea
is to represent a configuration s = (i, 〈r1, r2〉) by ŝ = (2r13r2p + i). For a number of
this form, (ŝ, E) will be called a proper state. A pair (y,E) with y > 0 which is not a
proper state is an improper state.
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We design a CCP that takes every proper state (ŝ, E), in a bounded number of
steps, to a (ŝ′, E) where s′ is the successor configuration to s.

Let ŝ = 2r13r2p + i = mx + rp + i, where 0 ≤ r < 6. The remainder r determines
whether each of r1 and r2 is zero or positive; hence, r and i determine the instruction
[i, β1, β2, D1, D2, k] to be simulated.

We now describe how to define g to perform this simulation. The definition for
points on the N and S axes is fixed by Definition 2.16; it rests to define the function
on the E and W axes.

• For a point (mx + rp + i, E), we define g according to the intended effect on R1

(represented by D1 being +1 or −1):

g(mx+ rp+ i, E) =

{
(mx+ rp+ i,N) D1 = (−1)

(4(mx+ rp) + i,N) D1 = (+1)
(5)

• For a point (mx+ rp+ i,W ), we define g according to the intended effect on R2

(represented by D2 being +1 or −1), as well as the new internal state, k:

g(mx+ rp+ i,W ) =

{
(mx+ rp+ k, S) D2 = (−1)

(9(mx+ rp) + k, S) D2 = (+1) .
(6)

Some explanations: starting with ŝ = (2r13r2p+ i, E), g produces a point on the N
axis, specifically (2r1+1+D13r2p+i,N). This point is mapped by g to (2r1+D13r2p+i,W ),
so the exponent of 2 has been incremented or decremented, as desired. Moving to the S
direction, we get (2r1+D13r2+1+D2p+k, S), and finally we reach (2r1+D13r2+D2p+k,E),
completing the simulation of the transition.

We conclude that, if M is mortal, every trajectory starting at a proper state will
arrive at a halting configuration, which by Lemma 2.15 is either (0, 〈0, 0〉), (0, 〈0, 1〉) or
(0, 〈1, 0〉). Its encoding as a compass point is (rp+ 0, E) with r ∈ {1, 2, 3}, so the CCP
is satisfied.

Since g has to be total, we have to define g for points where the “control state” is 0
as well; as we shall see below, the following definitions are useful

g(mx+ rp+ 0, E) = (mx+ rp+ 0, N), (7)

and
g(mx+ rp+ 0,W ) = (mx+ rp+ 0, S) (8)

(for the North and South axes the definition follows (4)).
Now, we consider also improper states. Consider any point (y,E) with y > m.

Write y as 2r13r2dp + i where d > 0 is indivisible by 2 and 3, and 0 ≤ i < p. Call
(y,E) a d-state (so proper states are 1-states). Suppose that (y,E) is improper. If M
is mortal, a trajectory similar to the one beginning with 2r13r2p + i will be followed,
since the presence of d affects neither the remainder modulo p, nor divisibility by 2 or
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Figure 3: Simulating the 3x+ 1 function by a 2-dimensional monic PAF.

3. This trajectory (call it a d-trajectory) will end at a point of the form (2e13e2dp,E)
with e1 + e2 ≤ 1. Thanks to definitions (7) and (8), it will progress as follows:

(2e13e2dp,E) = (mx+ rp+ 0, E) 7→ (mx+ rp+ 0, N) 7→ (
1

2
mx+ b1

2
rcp,W )

7→ (
1

2
mx+ b1

2
rcp, S) 7→ (

1

6
mx+ b1

6
rcp,E) = (

1

6
mx,E) .

Observe that 1
6mx ≤

1
6(mx+ rp) < dp. Hence, we obtained a state (y,E) with y < dp.

Note also that y is divisible by p. Express y as 2a3bd′p; then d′ < d. Thus, a trajectory
of d-states (that does not reach the final zone) eventually “jumps” to a d′-state, with
d′ < d. Clearly this process must be finite.

If M is not mortal, there will be an infinite computation, starting with some con-
figuration s with ŝ = 2r13r2p+ i. Now, let us choose (for a reason explained below) an
improper representation of s, specifically 2r13r2dp+ i, with d some prime greater than
6. The infinite computation of M is simulated by a d-trajectory of g, staying within
d-states (since the simulation does not halt, the situation where a truncated division
breaks divisibility by d will not arise). Note that every d-state has the form ydp+ i and
that ydp > m. So the trajectory will never reach the final zone. The reason for choosing
a d-state is to ensure this; a trajectory of proper states can “accidentally” reach the
final zone.

We conclude that our construction produces a CCP instance that is positive if and
only if M is mortal.
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role of region constraints f(x, y)

Div by 2 x≥2 , y ≥ 0 (x− 2, y + 1)

x mod 2 = 0 x=0 , y ≥ 0 (y, x)

x mod 2 = 1 x=1 , y ≥ 1 (x− 5, y)

Compute 3x+ 1 x<0 , y ≥ 1 (x− 6, y − 1)

West to South x<0 , y ≤ 0 (x+ 1, y − 1)

South to East x≥0 , y < 0 (x+ 1, y + 1)

Final zone 0 ≤x ≤ 1, y = 0 (x, y)

Table 3: A monic PAF simulating the 3x+ 1 function.

2.4.3 Reducing CCP to mortality of monic PAFs

The main theorem of this section is proved by reducing the CCP to the mortality
problem for monic PAFs. As the details of this construction are somewhat involved,
it may be useful to first look at a simple example, where the classic 3x + 1 problem is
represented by a monic 2-dimensional PAF, whose iteration reaches (1, 0) from initial
point (x, 0) if and only if the Collatz sequence from x reaches 1.

Recall that in the 3x + 1 problem there are just two possible “updates,” division
by 2 and the mapping x 7→ 3x + 1, which are selected according to x mod 2. This
makes it simpler than the Compass problem, where there are four “updates” and a
large modulus. However, we still make use of trajectories that orbit around the origin,
starting with the Cartesian point (x, 0) (Figure 3). The NE quadrant carries (x, 0) to
(bx/2c, x mod 2); if the division was even, the point is mapped to (x/2, 0), ready for
the next iteration; otherwise, proceeding counter-clockwise, this point is carried first to
(−(3x+ 1), 0), then to (0,−(3x+ 1)) and finally to (3x+ 1, 0).

For the complete definition of the PAF, see Table 3.
Next, we handle the CCP in all generality.

LEMMA 2.19. A CCP can be effectively reduced to mortality of a monic PAF on
Z2 (alternatively, to global convergence or global convergence to a fixed point of such a
function).

Proof. Given a description of a Compass Collatz function g, our reduction produces
the function f defined by Table 4, where for convenience every region has a label.
Explanations follow; see also Figure 4. Note that a row may be a concise presentation
of several regions, distinguished by indices (e.g., W out

r,i ). The table also deviates from
the definition of the class of monic functions by including values that have a constant
component in certain regions; e.g., in region Sin, f(x, y) = (0, y). This can be corrected
by decomposing the region into smaller ones. In the example of Sin, we define one region
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Figure 4: Simulating the Compass Collatz function by a 2-dimensional monic PAF.

for every x value (of which there are p− 1); then, for the region with x = c, we define
f(x, y) = (x− c, y).

To see how this PAF simulates g, we first describe the mapping of compass points
(x,∆) to points in Z2 (Cartesian points):

1. A compass point (mx + z,N), for x > 0, z < m, is represented by a Cartesian
point on the positive y axis, specifically (0,mx+ z).

2. A point (mx+ z, S) is represented by a point on the negative y axis, specifically
(0,−mx− z).

3. A point (mx+ z, E) is represented by a point close to the positive x axis, specifi-
cally, (mx+ z, z). Note that the y coordinate is the remainder modulo m.

4. A point (mx+ z,W ) is represented by a point close to the negative x axis, specif-
ically, (−mx− z,−z).

Next, we explain how dynamics of f simulate g. The handling of the West/South
axes is almost symmetric to that of the East/North axes so we only describe the latter.

1. A compass point (mx + z, E) is represented by (mx + z, z). According to the
definition of g, its action on this point depends on z:

If z = rp + i ∈ RN , (mx + z, z) falls under the first definition of Eout
r,i , and is

mapped immediately to (0,mx+ z), which is the representation of compass point
(mx+ z,N).
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region label constraints f(x, y)

NW x≤0, y ≥ 2m (x−m, y − 2m)

W in
r,i

0≤r<12, 0≤i<p
x≤0, y = rp+ i > 0 (x− br/2cp− i, −br/2cp− i)

W out
r,i

rp+i∈RS

x≤−m/2, y = −rp− i (0, x+ i− wrp+i)

W out
r,i

rp+i/∈RS

x≤−m/2, y = −rp− i (x+m, y − 9m+ rp+ i− wrp+i)

SW x≤− p, y ≤ −m (x+ p, y − 9p)

Sin −p < x < 0, y ≤ −m (0, y)

SE x ≥ 0, y ≤ −3m (x+m, y + 3m)

Ein
r,i

0≤r<18, 0≤i<p
x≥0, y = −rp− i < 0 (x+ br/3cp+ i, br/3cp+ i)

Eout
r,i

rp+i∈RN

x≥m, y = rp+ i (0, x)

Eout
r,i

rp+i/∈RN

x≥m, y = rp+ i (x−m, y + 4m− rp)

NE x≥p, y ≥ m (x− p, y + 4p)

N in 0 < x < p, y ≥ m (0, y)

Z elsewhere (0, 0)

Table 4: Simulating the Compass Collatz function by a 2-dimensional monic PAF.
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If z = rp + i /∈ RN , (mx + z, z) falls under the second definition of Eout
r,i , and is

mapped to (m(x − 1) + z, 4m + i). This will (in the typical case) fall into the
NE zone, where, repeatedly, p is subtracted from the first coordinate while 4p is
added to the second, until finally we get (i, 4(mx+rp)+ i). This is now in the N in

zone, and is mapped to (0, 4(mx + rp) + i), the representation of compass point
(4(mx+ rp) + i,N).

2. A compass point cN = (mx + rp + i,N) is represented by the Euclidean point
~xN = (0,mx+rp+i). According to Definition 2.16, g(cN ) = (12mx+b12rcp+i,W ).
If we write g(cN ) as (mx′+ z′,W ), then g(cN ) is represented by (−mx′− z′,−z′).
The action of f on ~xN is as follows. According to the action at region NW , m is
subtracted from the first coordinate while 2m is subtracted from the second, until
one of the W in regions is reached; it is not hard to see that the point reached is
(−mx′,m(x− 2x′) + rp+ i), where 0 ≤ x − 2x′ < 2, so that x′ = bx/2c. Now,
the specific region this point falls in is W in

r′,i where r′p = m(x− 2x′) + rp (with a
single exception, when r′ = i = 0, see below). The point is thus mapped into

(−mx′ − br′/2cp− i, −br′/2cp− i) .

Now, −mx′−br′/2cp = −(12mx+b12rcp), so the point obtained has as x coordinate
−(12mx+b12rcp)− i = −mx′−z′, and as y coordinate it has −br′/2cp− i, which is
exactly −z′. We conclude that g is correctly simulated. Note that the last point
is in W out

br′/2c,i .

In the exceptional case r′ = i = 0, the point (−mx′,m(x− 2x′) + rp+ i) =
(−mx′, 0) is already in W out

br′/2c,i , that is, W in is skipped.

A few other points are in order:

• Some points (z,∆) in the vicinity of the origin are mapped immediately to (0, 0),
specifically, {(z, E) | z < m}, (p,N), {(z,W ) | z < m/2} and {(y, S) | y < 3m}.
This agrees with the correctness of the reduction for the following reasons:

– Points (z, E) with z < m are the stopping condition for the CCP.

– Point (p,N) cannot be g(z, E) for any z ≥ m (this can be seen by inspect-
ing Definition 2.16). Thus, it cannot participate in an immortal trajectory,
except possibly as its initial point. But then there would be an immortal
trajectory without this point, too.

– A point (z,W ) with z < m/2 cannot be g(y,N) for any y ≥ m (this can
be seen by inspecting Definition 2.16). Thus, they cannot participate in an
immortal trajectory, except possibly as its initial point. But then there would
be an immortal trajectory without this point, too.

– Any point (y, S) with y < 3m is mapped by g to the final zone.
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role of region constraints f(x, y)

Div by 2 x>1 , y ≥ 0 (x− 2, y + 1)

x mod 2 = 0 x=1 , y ≥ 0 (y, x− 1)

Compute 3x+ 1 x<0 , y ≥ 0 (x− 6, y − 1)

West to South x≤(−2), y < 0 (x+ 1, y − 1)

South to East x>(−2), y < 0 (x+ 1, y + 1)

Table 5: A monic PAF simulating the 3x+ 1 function with five regions.

• There are also Cartesian points that do not represent any Compass point according
to the correspondence set above. For example, points (x, y) where x, y > 0 and
x 6≡ y (mod m); and similar points in the other quadrants. It is not hard, however,
to verify that such points are mapped, after a finite number of steps, to some point
on the y axis; the latter kind are all “proper,” that is, they represent a Compass
point, hence the trajectory they subsequently follow represents the dynamics of g.

• The function has no fixed point except the origin.

This concludes the proof of Lemma 2.19 .

Combining the lemmas, we obtain

THEOREM 2.20. Global convergence, mortality as well as global convergence to a
fixed point, all of monic piecewise-affine functions over Z2 are Π0

2-complete problems.

Bounding the number of regions. In view of Section 2.2, it is natural to ask
whether the hardness of the above problems survives some (large enough) constant
bound on the number of regions. Is there a constant bound for which they are unde-
cidable? Π0

2 hard?
The method of Section 2.2 does not seem to apply to this class of functions. But the

fact that the 3x+ 1 problem is representable with seven regions may be interpreted as
evidence for the hardness of this problem, even with a constrained number of regions:
it means that a decision procedure that works for seven regions only would tell us the
answer to the Collatz problem. This even holds for five regions, since it is possible to
optimise the representation of the problem to a 5-region function, shown in Table 5.
This encoding is based on representing an element x of the sequence as (0, x− 1) rather
than (0, x).

We also note that in three dimensions, Π0
2 hardness with a constant number of

regions follows relatively easily (details are deferred to Section 2.4.4). In one dimension
the problem is decidable (Section 3). It is, therefore, all the more intriguing that the
situation in two dimensions seems so hard to settle.
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2.4.4 Monic PAFs in three dimensions

We now consider functions over Z3 (or N3), and show a Π0
2-hardness result with a

bounded number of regions. It turns out that we can actually restrict the class of
functions: the natural adaptation of the definition of monic PAFs would allow for
permuting the variables, as in

f(~x) = (xi1 + b1, xi2 + b2, xi3 + b3)

where {i1, i2, i3} = {1, 2, 3}. But we will only use functions of the form

f(~x) = (x1 + b1, x2 + b2, x3 + b3) . (9)

The proof idea is to simulate an enhanced two-counter CM, using the three coordi-
nates to simulate the two counters and the program counter. Hardness with a bounded
number of regions follows from an adaptation of Proposition 2.7.

PROPOSITION 2.21. From an (ordinary) counter machine M and a universal ma-
chine U , one can compute an enhanced two-counter machine U2

M such that U2
M is mortal

if and only if M halts on every initial state (1, 〈x, 0, . . . , 0〉). The number of registers
and control states of U2

M are independent of M .

Proof. U2
M is obtained by converting the machine UM , presented in the proof of Propo-

sition 2.7, to a two-counter machine. This is done using the standard encoding of
several registers in one, going back to Minsky [46]. We recall it briefly. Suppose that
UM has n + 1 registers (for consistency with its construction in Section 2.2). Their
contents are encoded as the exponents of prime numbers p1, . . . , pn+1, so that state
(k, 〈x1, x2, . . . , xn+1〉) of UM is represented by a state (k, px1

1 · · · p
xn+1

n+1 , 0) of the two-
counter machine. Simulation of a step of UM involves the operations of: testing if the
contents of the first register is divisible by a certain constant, dividing or multiplying
it by a constant; all can be implemented by loops, using the second register for tem-
porary storage. Importantly, multiplication by c can be effected by a loop that uses
the ability of an enhanced CM to add c at a time; thus the number of control states
does not depend on the magnitude of constants in enhanced instructions of UM . It only
depends on the number of registers and control states of UM , known to be independent
of M . Finally, we recall from [9] that this translation to two-counter machines preserves
mortality.

THEOREM 2.22. There is a constant t such that mortality of piecewise-affine func-
tions of the form (9), whose definition consists of at most t regions, is Π0

2-complete.

Proof. We reduce from mortality of counter machines by first applying the transfor-
mation of Proposition 2.21, and then simulating the two-counter machine by a 3-
dimensional PAF (operating on a vector (x, y, z)). This is simple: one dimension is
used for the program counter and two others for the counters. Every enhanced CM in-
struction, [i, β1, β2, D1, D2, k], corresponds to a rectangular region (intersecting {x = i}
with {y = 0} or {y > 0}, according to β1, and with {z = 0} or {z > 0}, according to β2).
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Class of affine functions region Z2 Z2, partition Z3, partition
boundaries size bounded size bounded

1 f(~x) = (xi1 + b1, xi2 + b2), ±xi ≤ d Π0
2 Π0

1? Π0
2

where i1 6= i2 d ∈ Z

2 f(~x) = (a1xi1 + b1, a2xi2 + b2), ±xi ≤ d Π0
2 Π0

2? Π0
2

where i1 6= i2 and a1,2 ∈ {±1} d ∈ Z

3 f(~x) = (xi1 + b1, xi2 + b2), cxi ≤ d Π0
2 Π0

2? Π0
2

where i1 6= i2 c, d ∈ Z

4 f(~x) = (xi1 + b1, xi2 + b2), ±xi ≤ d Π0
2 Π0

2? Π0
2

where {i1, i2} ⊆ {1, 2} d ∈ Z

5 f(~x) = (x1 + b1, x2 + b2) ±xi ≤ d decidable? decidable? Π0
2-complete

Table 6: Some simple function classes and results known or conjectured about the
decidability of Mortality (the conjectures are marked with “?”). The first row refers to
our class of monic PAFs. When referring to bounded partition size, the expression “for
a bound large enough” should be tacitly understood. When a class Π0

i appears, the
problem is (or is conjectured to be) complete for that class.

Its effect is clearly expressed by the monic function f(x, y, z) = (x+k−i, y+D1, z+D2).
For all the points with x greater than the highest instruction, we define the function so
that it reduces x to 0, and for x = 0 (which signifies halting) we define it so it reduces
y and z to zero. Thus mortality of the PAF is equivalent to mortality of the CM.

2.4.5 Some function classes similar to monic PAFs

As previously stated, the choice of studying specifically the monic PAF class is arbitrary
(though not random). It turned out to be an interesting class, as some results could
be achieved (but required a non-trivial proof), and some open problems remain. Some
similar classes are suggested in the following paragraphs, and summarised in Table 6,
along with results about them and also some conjectures (the table also includes the
monic PAF class studied above, to give the complete picture).

Larger classes of functions. Classes 2–4 in Table 6 are larger than our monic PAFs.
Hence, results proved for our class transfer easily. But it is conjectured that stronger
results can be proved. Note that the first extends the range of coefficients of the affine
parts; the second removes the restriction on the coefficients in the region definitions;
and the last one allows to duplicate a value, that is, to map (x, y) to (x+ a, x+ b) (this
class and the conjecture about it have been proposed by a referee).

A smaller class of functions. The last class in the table includes functions which,
in each region, take the form f(~x) = (x1+b1, x2+b2). Such functions resemble the class
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studied by Asarin, Maler and Pnueli [1] in a continuous setting. They showed that un-
decidability of the reachability problem begins at three dimensions. Over the integers,
undecidability of reachability as well as Π0

2-completeness of mortality at three dimen-
sions follow easily from simulation of two-counter machines (as shown in Section 2.4.4).
Over Z2, decidability has not yet been established.

Functions over Nn. Unlike the reduction used to prove Theorem 2.4, the construc-
tion using monic functions makes essential use of negative numbers. While in three
dimensions, Π0

2 hardness follows from Theorem 2.22 (one just has to review its proof to
see that only natural numbers are necessary), we leave the situation in two dimensions
as an open problem.

2.4.6 An application to functions over the rationals

Recall that [9] proved that global convergence and mortality of piecewise-affine functions
over Q2 are undecidable, a result strengthened by Corolloary 2.10 to Π0

2-completeness for
mortality (for global convergence we can only deduce Π0

2-hardness, since the problem
is not clearly in Π0

2). Next, we show that the result on monic functions can also be
adapted to the rationals. We need to slightly extend the class of functions, as follows.

Definition 2.23. A nearly-monic piecewise affine function (PAF) on Q2 is a piecewise
affine function where each of the defining affine components has either the form f(~x) =
(xi1 + b1, xi2 + b2), where {i1, i2} = {1, 2} and b1, b2 ∈ Z, or f(~x) = (0, 0). In addition,
the halfspaces which define the space partition are given by inequalities of the form
±xi ≤ d.

Thus, the extension to the class of monic functions is the availability of the option
f(~x) = (0, 0). This extension is important: without it, such a function cannot be mortal,
since one cannot map non-integral values to integers.

THEOREM 2.24. Global convergence, mortality and global convergence to a fixed-
point of nearly-monic piecewise-affine functions over Q2 are Π0

2-complete problems.

Proof. We claim that the behaviour of the function f constructed in Lemma 2.19, when
converted to a nearly-monic function on Q2, is the same as for the integers. The basic
idea is quite simple: we make sure that the definition of the regions is such that a
rational point (x, y) falls into the same region as (bxc, byc). Note that the function
f(~x) = (xi1 + b1, xi2 + b2) leaves the fractional parts fixed. So the trajectory from
(x, y) is an integer-valued trajectory from (bxc, byc), shifted by a fixed fractional part.
Table 7 gives the details. The changes in comparison to Table 4 are two: first, the
definition of regions has been corrected, where necessary, to cover the adjacent unit
squares; for example, in the definition of W in

r,i, instead of y = −rp − i, we now have
−rp− i ≤ y < −rp− i+ 1. Secondly, cases where, in the integer case, a component of
the value of a function was written as a constant, have been rewritten to conform to
the monic function class; for example, whereas in Table 4 we find that in region Sin,
f(x, y) = (0, y), Table 7 breaks Sin into sets Sin

i with f(x, y) = (x + i, y). This is not
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really a change (i.e., this is how the function was supposed to be also in the integer
case), but by making it explicit it becomes easier to verify that nothing breaks when
adapting to the continuous case.

3 Decidability and Complexity in One Dimension

Blondel et al. [9] prove that global convergence is decidable in polynomial time for
n = 1 when the function is continuous. The result can be easily extended to mortality,
as shown in the next subsection. Our main result concerns the integers, where continuity
is irrelevant. We show decidability and classify the problem’s complexity as PSPACE-
complete6.

3.1 The continuous case

We extend the solution of Blondel et al. for global convergence, to show that mortality
can also be decided in polynomial time for continuous piecewise-affine functions with
rational coefficients.

The decision procedure follows form the following lemma.

LEMMA 3.1. [9] For a continuous piecewise affine function f : R→ R (with rational
coefficients), f is globally convergent if and only if the following hold:
(∗) For every x > 0, f(x) < x and f (2)(x) < x, and for every x < 0, f(x) > x and
f (2)(x) > x.

We prove

LEMMA 3.2. For a continuous piecewise affine function f : R → R (with rational
coefficients), f is mortal if and only if the conditions (∗) above hold, and in addition,
there is some ε > 0 such that either f(x) = 0 on 0 ≤ x ≤ ε, and f(x) ≥ 0 on
−ε ≤ x ≤ 0, or f(x) = 0 on −ε ≤ x ≤ 0, and f(x) ≤ 0 on 0 ≤ x ≤ ε.

Proof. Assume that f is mortal. Then it is globally convergent. It must have f(0) = 0.
By Lemma 3.1, for any x > 0, f(x) < x. We can consider ε small enough so that
on [0, ε] our function is linear, and similarly on [−ε, 0]. Suppose that in [0, ε] we have
f(x) > 0; then starting from 0 < x0 < ε, we get an infinite trajectory, limiting at zero
but not reaching it. So we must have f(x) ≤ 0. We similarly show that for −ε ≤ x ≤ 0
we require f(x) ≥ 0.

In addition, if f(x) < 0 for small positive x, and f(x) > 0 for small negative x,
again we have an infinite trajectory. Thus one can conclude that at least one of these
conditions must not hold; i.e., f(x) = 0 either on [0, ε] or on [−ε, 0].

For the problem convergence to a fixed point, its complexity in the 1-dimensional,
continuous case remains open.

6Recent work by Finkel, Göller and Haase [27] includes a PSPACE algorithm for a more general
problem: machines with a single register subject to polynomial updates.
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region label constraints f(x, y)

NW x < 1, y ≥ 2m (x−m, y − 2m)

W in
r,i

0≤r<12, 0≤i<p

x < 1,
0 < rp+ i ≤ y < rp+ i+ 1

(x− br/2cp− i, y − b32rcp− 2i)

W out
r,i

rp+i∈RS

x≤−m/2,
−rp− i ≤ y < −rp− i+ 1

(0, x+ i− wrp+i)

W out
r,i

rp+i/∈RS

x≤−m/2,
−rp− i ≤ y < −rp− i+ 1

(x+m, y − 9m+ rp+ i− wrp+i)

SW x < −p+ 1, y < −m+ 1 (x+ p, y − 9p)

Sin
i

0<i<p
−i ≤ x < −i+ 1, y < −m+ 1 (x+ i, y)

SE x ≥ 0, y < −3m+ 1 (x+m, y + 3m)

Ein
r,i

0≤r<18, 0≤i<p

x≥0,
−rp− i ≤ y < −rp− i+ 1 ≤ 0

(x+ br/3cp+ i, y + b43rcp+ 2i)

Eout
r,i

rp+i∈RN

x≥m,
rp+ i ≤ y < rp+ i+ 1

(y − rp− i, x)

Eout
r,i

rp+i/∈RN

x≥m,
rp+ i ≤ y < rp+ i+ 1

(x−m, y + 4m− rp)

NE x≥p, y ≥ m (x− p, y + 4p)

N in
i

0<i<p
i ≤ x < i+ 1, y ≥ m (x− i, y)

Z elsewhere (0, 0)

Table 7: The definition of the monic PAF, rewritten for the rationals.
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3.2 Understanding the integer problem

The following examples illustrate the difference between mortality over the integers and
over the reals. The first function has a fixed point at 10/3 and therefore is not mortal
over the reals (or rationals); but it is over the integers, and we explain later how this is
ascertained by our algorithm. Similarly, the second function has a fixed point at 4/3,
which breaks its mortality if the reals or rationals are considered.

f1(x) =


−2x+ 10 x > 2
4 x < 0
0 x = 0
4− 2x 1 ≤ x ≤ 2

(10)

f2(x) =


x− 3 x > 2
4 x < 0
0 x = 0
4− 2x 1 ≤ x ≤ 2

(11)

Note that in dimension one, the regions are just a partition of Z into a finite number
of intervals. We may assume that these are given explicitly as the list of the end points
of closed intervals, e.g.,

(−∞,−3], [−2, 0], [1,+∞)

plus the coefficients of the affine function associated with each interval. This list forms
the standard description, in terms of which we make considerations of complexity. There
will always be one interval infinite to the left, which we denote by (−∞, L], and one
infinite to the right, denoted by [R,+∞); and by breaking intervals into parts if neces-
sary we can ensure L < 0 and R > 0. We denote the function in the negative infinite
interval by a−x+ b− and the function in the positive infinite interval by a+x+ b+.

3.3 A decision algorithm

The input to our decision algorithm is a standard description 〈f〉 of the subject function
f . We define

ρ = max({R} ∪ {f(x), where L ≤ x ≤ R})
λ = min({L} ∪ {f(x), where L ≤ x ≤ R})

Note that these values can be easily calculated in polynomial time, since for each finite
interval, f(x) assumes the maximum (or minimum) at one of its ends. These values
show how far away from 0 one can get without using the infinite regions.

Next, we show a simple (polynomial-time) algorithm that either determines that the
dynamical system is divergent, which means that there is an unbounded trajectory; or
returns a finite interval A such that all trajectories visit it infinitely many times.

LEMMA 3.3. Suppose that at least one of a+, a− is non-negative. If either a+ or a− is
bigger than 1; or a+ = 1 and b+ ≥ 0; or a− = 1 and b− ≤ 0, then f is divergent, hence
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not mortal. Otherwise, it holds that all trajectories visit the set A = [λ, ρ] infinitely
often.

Proof. If either a− or a+ is bigger than 1, it is easy to see that for x of sufficiently large
absolute value, iterating f from initial point x diverges. Similarly, if a− = 1 and b− ≤ 0,
or a+ = 1 and b+ ≥ 0. Hence, let us assume that none of these cases holds. We then
have to prove that all trajectories visit A infinitely often, which boils down to proving

∀x0 ∈ Z . ∃ t > 0 . xt = f (t)(x0) ∈ A . (12)

There are a few sub-cases to consider, depending on the values of a+, a−, b+, b−. For
symmetry, it suffices to consider x0 > 0. By the definition of A, (12) clearly holds for
x0 ∈ [L,R]. So we consider x0 > R, and perform a case analysis on a+.

1. Suppose that a+ = 1 and b+ < 0 (the case with our example f2). Then, as long
as xi > R, we have xi+1 = xi + b+ < xi. Hence, the trajectory is a descending
sequence which must reach a point in (R + b+, R]. Note that by definition, λ ≤
f(R) = R+ b+, so we see that the trajectory must enter A.

2. If a+ = 0, then the function is f(x) = b+ on [R,+∞), so x1 = b+ = f(R) ∈ A.

3. This leaves the case a+ < 0. Now f(x0) = a+x0 + b+. If f(x0) ∈ A, we are done.
Suppose it is not. That is, either f(x0) > ρ or f(x0) < λ. In the first case, this
means a+x0 + b+ > ρ ≥ f(R) = a+R + b+, implying x0 < R, a contradiction. In
the second case, f(x0) < L, so we consider the definition of f in this region. Since
we are not in the divergent case, there are, again, two sub-cases.

(a) a− = 1 and b− > 0. Thus f(y) > y for y ≤ L and the trajectory proceeds as
an ascending sequence which must reach a point in [L,L+ b−), hence in A.

(b) a− = 0. In this case, f(f(x0)) = b− = f(L) ∈ A.

Example 3.1. Consider f1 from (10). By its definition for x < 0, we see that a− = 0.
By its definition for x > 2, we see that a+ = (−2). Hence, none of the cases that
immediately imply divergence apply. Note that [L,R] = [−1, 3]. We then compute

λ = min({−1} ∪ {f(x), where − 1 ≤ x ≤ 3}) = −1;

ρ = max({3} ∪ {f(x), where − 1 ≤ x ≤ 3}) = 4 .

So we test the trajectory from each point in [−1, 4]; this interval is actually covered by
the mortal trajectories shown next

1

��
−1 // 4 // 2 // 0

3

>>
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for x := λ, . . . ,−1, 1, . . . , ρ do {
a := x ;
b := f ( x ) ;
while a 6= b do {

i f b = 0 begin next iteration of the for loop
b := f (b ) ;
i f b = 0 begin next iteration of the for loop
b := f (b ) ;
a := f ( a ) ;

}
return “immortal trajectory starting at” x

}
return f “is mortal”

Figure 5: Algorithm to test for immortal trajectory starting in the set A.

We conclude that the function is mortal.

THEOREM 3.4. Global convergence, mortality and convergence to a fixed point, all
for a piecewise affine function f : Z → Z with integer coefficients, are PSPACE prob-
lems.

As we later prove, they are actually PSPACE-complete.

Proof. The algorithm for analysing mortality is as follows. First, if both a+ an a− are
negative, we construct (in polynomial time) a representation of f ◦f , whose asymptotic
behaviour is the same, and has positive coefficients in the infinite regions; we thus
assume that Lemma 3.3 is applicable. By testing the conditions stated in the lemma,
we either conclude immediately that f is not mortal, or get the attractor-like set A. In
the latter case, we now proceed to trace, for each point x0 ∈ A, the trajectory from x0,
until either finding that it reaches zero, or that it cycles without meeting the origin—so
we know if f is mortal. Note that this can be accomplished in polynomial space: a
pseudo-code of the procedure appears in Figure 5. To verify it, note that on the ith
entrance to the loop, we have

a = f (i)(x), b = f (2i+1)(x), ∀j < 2i+1 . f (j)(x) 6= 0, ∀k < i . f (k)(x) 6= f (2i+1)(x) .

It follows that if the sequence from x has an eventual period of p, the loop will stop. To
see this, choose i so that i is big enough to enter the periodic part, and i+ 1 a multiple
of p. Then f (i)(x) = f (2i+1)(x), i.e., a = b, and the loop guard is not satisfied.

A somewhat simpler (but slower to stop) algorithm is to compute each trajectory
while counting how many times a point in A is visited; the count will exceed |A| if and
only if there is a cycle.

Finally we consider the other problems. For the convergence problem, the answer is
negative if f(0) 6= 0, while if f(0) = 0 it is equivalent to mortality. For convergence to
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a fixed point, we can use essentially the same algorithm as for mortality, except for the
following changes:
• First, comparing to Lemma 3.3, we note that the response when a+ = 1 and
b+ = 0, or a− = 1 and b− = 0, changes: in these cases, the trajectories starting
at the corresponding infinite region do reach a fixed point (immediately); so we
should proceed to the main algorithm (exhaustively testing trajectories starting
at A).
• In the exhaustive-search algorithm, instead of looking for the arrival at zero, we

are looking for a point where f(x) = x.

3.4 PSPACE hardness

In this subsection we shall prove that global convergence and mortality over Z of a
piecewise affine function f with integer coefficients are PSPACE-hard. To this end,
we next introduce several Turing-machine variants as intermediate representations, and
show a sequence of reductions, culminating in our decision problem.

3.4.1 Some abstract machines

We define the machine models used in the series of reductions. The first machine is a
restricted form of linearly bounded automaton (LBA) [61].

Definition 3.5. A tally LBA is a single-tape machine that receives as input a string of
the form 0n for some n ≥ 0; this string is initially written on its work tape, delimited
by endmarkers. The machine is guaranteed to never move beyond the endmarkers. In
our machines, the tape alphabet is always binary.

In the next definition, we consider the tally string to be part of the machine’s
description: hence, a given machine only performs a single computation.

Definition 3.6. A fixed-space machine with oblivious queue access is a Turing machine
with the following features:

1. The work tape is a queue of a fixed capacity n (which we consider to be given, in
tally form, as part of the standard description of such a machine). In every step
the machine strips a symbol from the front of the queue and adds one to the rear.
Hence, an instruction of the machine is given by a 4-tuple (q, b, q′, b′), where:
q is the current control state, q′ the next;
b the symbol read off the queue, b′ the symbol appended to the queue.

We use the customary symbol δ for the set of these 4-tuples.

2. The work-tape (queue) alphabet is binary.

3. The initial contents of the queue are 0n.
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Tally LBA halting
//
FSOQM halting

**
FSOQ&CM mortality

tt
1-dim PAF mortality FSOQM mortality

oo

Figure 6: Reductions for proving PSPACE-hardness. Here, FSOQM stands for
fixed-space queue machine (Definition 3.6) and FSOQ&CM stand for fixed-space
queue machine with clock (Definition 3.7).

Definition 3.7. A fixed-space machine with oblivious queue access and a clock, briefly
a fixed-space Q&C machine, is a Turing machine with the following features:

1. The work tape is a queue of a fixed capacity n (which we consider to be given, in
tally form, as part of the standard description of such a machine). In every step
the machine strips a symbol from the front of the queue and adds one to the rear.
Hence, an instruction of the machine is given by a 4-tuple (q, b, q′, b′), as in the
last definition.

2. The work-tape (queue) alphabet is binary.

3. The machine also has a clock. This device is a counter (a register of non-negative
integer value) that is automatically decremented each time the machine has com-
pleted another cycle through the queue (that is, exactly n transitions). If the
clock reaches zero, the machine is reset: the queue is cleared, the control state is
reset to an initial state (0) and the clock is reset to its initial value.

4. The initial contents of the queue are 0n; the initial clock value is given—in binary—
as part of the standard description of such a machine.

3.4.2 Simulations and hardness results

We now proceed to a sequence of reductions, that starting from the text-book result
that halting of tally LBA is PSPACE-hard, culminates in our problem of interest. A
road map is provided by Figure 6.

LEMMA 3.8. The halting problem of tally LBAs is a PSPACE-hard problem.

This is a folklore result, which can be proved directly from the definition of PSPACE-
hardness with little effort.

LEMMA 3.9. The computation of a tally LBA on input 0n can be simulated by a
fixed-space machine with oblivious queue access, whose queue capacity is 2n.
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Proof. This is a rather simple construction with a little twist. Suppose (momentarily)
that the queue capacity is 2n + 2 bits. The tape is simulated by the queue, using an
encoding of bits as pairs of bits, for instance 0 7→ 00, 1 7→ 01. The additional 2 bits
are set to 11 and used to simulate he endmarkers (one pair simulates both endmarkers
because the queue is cyclic!). The machine marks the current head position on the
tape by changing the first digit of the pair “under the head” from a 0 to a 1. Every
transition of M is simulated by cycling through the queue. During each cycle, when
the head position is encountered, the appropriate local action can be taken (but see the
next paragraph).

The reader may wonder how a transition that moves a head backwards can be
simulated as we cycle through the queue. The reader might also wonder why the
queue capacity has been defined as 2n rather than 2n+ 2. Both questions are answered
by revealing that we keep one symbol (the one to the left of the head) only in the
finite control. In every “instruction cycle,” the machine takes a pair of bits off the
queue, which corresponds to the next symbol (say, the ith) on the simulated tape, while
enqueuing the pair representing the i − 1st symbol. If a left-move is to be simulated,
when the machine reads a 1-bit as the first bit of a pair (which signals that the head
position has been reached), it will write a 1-bit, thus marking the previous encoded
symbol as being scanned by the head.

Mortality of fixed-space machines is defined as usual: halting when started with any
possible configuration. Note that there are finitely many such configurations, due to
the fixed space.

LEMMA 3.10. The halting problem for fixed-space Turing machines with oblivious
queue access can be reduced, in logarithmic space, to mortality of a fixed-space Q&C
machine.

Proof. Observe that if the given machine ever halts, the length of its computation must
be bounded by 2n · m, where n is the given queue size and m the number of control
states (argument: this is the number of distinct configurations of the machine). We
let this be the initial value of the clock, so that if the machine does halt, it will halt
before the clock times out. If the machine does not halt, it will eventually time out,
then restart, ad infinitum. To see that a halting machine is transformed into a mortal
one, note that regardless of its initial configuration, the Q&C machine will either halt
or time out. If timed out, it resests, and subsequently carries on a correct simulation
the given input-free machine.

LEMMA 3.11. Mortality of fixed-space Turing machines with oblivious queue access
is PSPACE-hard.

Proof. We reduce from mortality of fixed-space Q&C machines. Given such a machine,
our job is to eliminate the clock. We do it by the following steps.

1. Let the machine have m control states q ∈ Q. We create a set of mn control states,
Q× [0, n− 1], and change every transition from state q to q′ to a transition from
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(q, i) to (q′, i+ 1 mod n) for all i < n. The effect is that the second component of
the control state indicates the position in the queue (it returns to zero each time
that a cycle over the queue is completed).

2. We now change the queue size from n to n+c, where the additional c bits suffice to
represent the clock. Accordingly, we increase the set of control states so that when
transitioning from (q, n− 1), the machine first moves over the space dedicated to
the clock, decrementing its value (this is quite easy to do by representing the binary
value with its LSB in front), and also checking whether zero has been reached.
According to the result, either (q′, 0) will be entered (completing a simulation of
the original transition), or a special set of states will be entered which resets the
machine.

Next, we reduce to the PAF mortality problem. It suffices to consider functions of
natural numbers.

THEOREM 3.12. Mortality, as well as global convergence, of a piecewise affine func-
tion f : N→ N with integer coefficients is PSPACE-hard (under logspace reductions).

Proof. We reduce from mortality of fixed-space machines with oblivious queue access.
The reduction transforms a machine M , given with its space bound n, into a repre-

sentation of a piecewise-affine function f that simulates M and is mortal if and only if
M is.

Let us first describe the essence of this simulation. Suppose that M has m states.
A configuration of M is specified by (q, w) where q ∈ [0,m− 1] is the control state, and
w ∈ {0, 1}n is the contents of the queue.

By identifying w with the integer that it represents in binary notation, we define an
integer that encodes a configuration:

〈q, w〉 = q · 2n + w . (13)

Next, we define f as a function that maps a configuration to the next, simulating the
machine; we present the definition by cases.
For each (q, b, q′, b′) ∈ δ, we define

f(〈q, bz〉) = 〈q′, zb′〉 . (14)

If there is no transition starting with (q, b),

f(〈q, bz〉) = 0. (15)

We now verify that the above definitions yield a piecewise-affine function. Since this
is a one-dimensional PAF, its regions of definition are intervals and we use the notation
a+ [b, c] for [a+ b, a+ c]. Let Rq,b be the interval q · 2n + b · 2n−1 + [0, 2n−1 − 1]. The
function f is defined on each such interval according to the applicable case:
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1. Every transition described by (14) is translated into:

x ∈ Rq,b ⇒ f(x) = 2(x− q · 2n − b · 2n−1) + q′ · 2n + b′

2. If there is no such transition,

x ∈ Rq,b ⇒ f(x) = 0.

Inspecting the machines constructed in the proof of Lemma 3.10, we see that every
transition changes the control state. In the last construction, this means that there will
be no fixed point other than zero. Hence, we also have

COROLLARY 3.13. Mortality, as well as global convergence, of a piecewise affine
function f : N → N with integer coefficients is PSPACE-hard (under logspace reduc-
tions).

It may be interesting to note that the set of coefficients of x in the function produced
by the reduction is rather limited: 0 or 2.

3.4.3 Discussion

It now becomes natural to ask for the complexity of our decision problems for restrictions
of the one-dimensional problem. Of course, many restrictions can be invented. By
looking at the proof of Theorem 3.4, we see that if a+ or a− are greater than 1, it is an
easy case. I find the following questions particularly interesting (compare Theorem 2.20
and Corollary 2.10):

• Open problem 1. Consider one-dimensional integer piecewise affine functions de-
fined by

f(x) = x+ bi for x ∈ Hi, (16)

where the sets H1, . . . ,Hp are an exhaustive partition of Z (or just N) into p
intervals, and the constants b1, . . . , bp arbitrary integers. What is the complexity
of the mortality problem for such functions?

• Open problem 2. Is there a polynomial algorithm for the mortality problem of
one-dimensional PAFs when the number of intervals is considered a constant?

• Open problem 3. Is there an algorithm for the mortality problem of PAFs over Q
(with rational coefficients), when continuity is not assumed?

4 Decidability for affine functions

Affine-linear transformations have been much studied in Dynamical System Theory,
e.g., [31]. The setting there is that of a continuous state space, but the techniques are
hardly affected by the restriction to Zn. Full proofs for the theorems below have been
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nonetheless included for the sake of completeness, but also to make it easier to verify
that they do hold in our setting.

We rely on some properties of matrices and matrix powers. They may be found in
textbooks such as [56].

THEOREM 4.1. There is a polynomial-time algorithm for deciding global convergence
over Zn of an affine function f(~x) = A~x+ b.

Proof. Note, first, that f(0) = b. Hence, for global convergence we must have b = 0.
So the function is f(~x) = A~x and the question is whether ∀~x∃k : Ak~x = 0. In fact,
it suffices to find such a k for every vector in the standard basis of Qn. To see this,
let e1, . . . , en be the basis vectors. Suppose that for every ei there is a ki such that
Akiei = 0. Let k = max(k1, . . . , kn). Then, for general ~x = a1e1 + · · ·+ anen, we have

Ak~x =
∑
i

aiA
kei =

∑
i

aiA
k−kiAkiei =

∑
i

aiA
k−ki0 = 0.

Note that for k as above we actually have Ak = 0, that is, matrix A is nilpotent. This
is known to be true if and only if An = 0 ([56, Theorem 1.13]). Hence, this is all we
have to check.

THEOREM 4.2. There is a polynomial-time algorithm for deciding mortality over Zn

of an affine function f(~x) = A~x+ b.

Proof. We shall prove that mortality is only possible if b = 0, so it coincides with global
convergence to zero.

It is easily proved by induction that for any r > 0, we have

f (r)(~x) = Ar~x+ (Ar−1 + · · ·+A+ I)b = Ar~x+ f (r−1)(b) . (17)

Suppose that f is mortal. Then, in particular, the sequence b, f(b), f (2)(b), . . . reaches
0, that is, fk(b) = 0 for some k > 0. Note that b = f(0), so we conclude that this
sequence is periodic. Let S be the (finite) set of vectors appearing in this sequence.
Now, for any ~x 6= 0,

f (r)(~x)−Ar~x ∈ S
so, if f is mortal, we must have Ar~x ∈ −S for some r. Suppose that for all r, Ar~x 6= 0.
That is, the vector Ar~x contains a non-zero component. Then, for integer λ large
enough, we shall have Ar(λ~x) /∈ −S for all r (simply choose λ larger than the maximum
absolute value of components of vectors in S), a contradiction; we deduce that Ar~x
must be 0 for some r. Thus, as in the previous proof, A is nilpotent.

Now, An = 0, and by (17), f (n)(b) = f (n−1)(b), that is, f has a fixed point at
f (n−1)(b). For mortality we require the only fixed point to be 0, which means b = 0.

5 Conclusion

We summarize the work presented and follow it with some open problems and research
directions, including some pointers to the literature.
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5.1 Summary of results

This article presents work on the border between Dynamical System Theory (much of
which refers to continuous state-spaces) and the Theory of Computation in discrete mod-
els. In particular, this work connects Dynamical System Theory to problems of program
termination, inspired by previous work on the termination of affine and piecewise-affine
loops [58, 14, 7] and on the analysis of the mortality problem in a continuous domain [9].
I’d like to argue that such results may be of interest also in the context of continuous-
space dynamical systems (e.g., as models of some kinds of physical systems), since,
unlike previous proofs, the undecidability is not derived from the encoding of informa-
tion into the fractional bits of a value, which boils down to assuming unlimited precision
in measurement7.

We have shown that mortality, convergence (to zero) and convergence to any fixed
point are undecidable in general for iterated piecewise-affine functions over Z2. The
undecidability is affected by several properties of the functions: we get decidable prob-
lems if we restrict the dimension to one, or the functions to affine ones. Some other
restrictions preserve undecidability, for example, the problems are undecidable in two
dimensions for a large enough, but fixed, number of affine pieces. The undecidability
results have been refined to Π0

2 completeness; the decidable problems have been inves-
tigated for their complexity, which ranges from PTIME to PSPACE-complete. The
strengthened undecidability results also apply to the continuous setting, improving on
previous work.

It is the author’s hope that the results presented are of interest, but also the tech-
niques and connections made to Collatz-like problems and to automata that capture
PSPACE. Undecidability for a very restricted class of functions, the monic functions,
may be a useful result for future work in the sense that it may be easier to translate
the restricted class into other problems of interest.

5.2 Reachability-type problems

The focus of this work is on deciding global properties of systems, so we have not
dwelt on the problem that corresponds to the common Turing-machine halting problem,
namely: given a function and an initial value x0, does the sequence beginning with x0
reach zero. However it is easy to see, from our proofs, that this problem is RE-complete
in two dimensions and PSPACE-complete in one. Interestingly, for functions over R,
this “halting problem” was mentioned as an open problem in [38, 9]. For affine-linear
functions, the problem: does the sequence beginning with x0 reach a given value y? Is
known as the orbit problem and was solved in polynomial time over the rationals in [36]
(technically, they refer to linear transformations, but the problem for any affine-linear
transformation is easily reducible to the former).

7There are works that address this criticism in another way, namely by considering robust construc-
tions that work in dynamical systems subject to some noise. There is research about the computational
power of robust systems [11, 32] and about “robust” versions of decision problems about dynamical
systems [12, 28, 29].
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Some extensions, or variants, of the orbit problem prove harder (in terms of com-
putational complexity, or in terms of establishing results about them). A celebrated
open problem is the decidability of Skolem’s problem (sometimes referred to as Pisot’s
problem): consider a function defined by f(x) = Mx where M is a square (k×k) integer
matrix; given an initial value u, decide whether the sequence (M iu)i≥0 ever hits a given
hyperplane a · x = 0. Vyalyi and Tarasov [60] point out that this problem and Kannan
and Lipton’s orbit problem can both be seen as special cases of the problem of reaching
a given convex region, which they call the chamber hitting problem, and which they
relate to questions of formal-language theory. Chonev et al. [17] give decidability and
complexity results for the problem in case that the “chamber” is a linear subspace of
dimension up to 3. Recent progress on this problem is reported in [18]. The case where
the target is a closed half-space is considered in [49]. See also the survey [48].

In a variant studied by Cortier [22], a point in Nn is subjected to an arbitrary
number of iterations of an affine-linear function f1, and then to iterations of another
function f2; the reachability problem (for a single target point) is shown to be decid-
able. A generalization involving a larger number of stages f1, f2, . . . , fp is shown to be
undecidable once p is beyond some (unspecified) constant. Over Z (in one dimension),
decidability for any number of functions is claimed in [30], while undecidability for Zn,
n ≥ 2, follows from results on the matrix mortality problem (see below).

A beautiful paper by Bell and Potapov [2] shows how various reachability problems
are related to questions about sets of matrices and to Post’s correspondence problem. In
particular, show that given 5 integer matrices, M1, . . . ,M5, of dimension at least four, an
initial (integer) vector x0 and a final vector y, it is undecidable whether y can be reached
by applying some sequence of these linear transformation, i.e., y = Mi1Mi2 . . .Mik for
some finite sequence i1, . . . , ik. They also show an undecidability result for five matrices
in two dimensions, but only over the rationals. The punch of this work is in showing
that undecidability holds for very small instances. One naturally wonders whether,
perhaps using similar techniques, undecidability bounds for our problems (such as the
number of regions, discussed in Section 2.2 could be made much smaller.

Peter van Emde Boas and Marek Karpinski [59] describe the “mouse in an octant”
problem, attributed to Lothar Budach, a reachability problem for a very simple kind of
2-counter programs, whose decidability status is apparently still open. Its analysis [59]
shows that number-theoretic considerations, somewhat in the flavour of the Collatz
problem, are involved in understanding such programs. See also [53, 4].

5.3 Open problems

Here is a recap of some open problems—all concern piecewise-affine functions over the
integers, and have been described in more detail in previous sections.

1. Is there any constant bound on the number of regions which suffices to make mor-
tality of monic piecewise-affine functions over Z2 as hard as the general problem,
i.e., Π0

2 hard? Or just undecidable?
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2. (Braverman’s problem) Is mortality decidable for functions which are zero outside
a single convex region (and affine within)?

3. What is the complexity of the mortality problem in the one-dimensional case,
when the coefficient of x is always 1?

4. What is the complexity of the mortality problem in the one-dimensional case,
when the number of intervals is considered a constant?

We also note some open problems regarding the continuous case (i.e., functions with
rational coefficients over either Qn or Rn):

1. What is the computability class of mortality for continuous piecewise-affine func-
tions over Q2?

2. What is the computability class of mortality for (not necessarily continuous)
piecewise-affine functions over Q?

3. What is the computability class of global convergence, and of global convergence
to a fixed point, of piecewise-affine functions over Q2? We only know they are
Π0

2-hard (when the functions are not assumed continuous).

Finally, a possible direction for extending this study is to look at polynomials and
piecewise-polynomial functions (a recent paper [27] considers a related model—register
machines with polynomial updates. It shows PSPACE complexity for a machines with
a single register).

A Proof of Lemma 2.11

To obtain the bounds stated in Lemma 2.11, the following steps will be taken. First,
we recall a particular universal counter machine constructed by Korec [39]. Then, we
redo the construction of Theorem 2.7 in a more ad-hoc fashion, to get optimised results
for this particular universal machine. Finally, we reduce the number of registers in the
machine.

Korec’s machine In [39], Ivan Korec presents several universal counter machines,
differing in details of their operation and the instruction sets they use. Among them,
we use one which is called U19 (because it has 19 states). This machine has the following
features:

1. It simulates two-counter machines. This suffices for our purposes, because the
totality problem for 2CM is Π0

2-complete.

2. It has seven registers.

• R1 is where the code M̂ is kept.
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• R7 is used as a back-up copy of R1 when decoding instructions. This is done
so that the sum R1+R7 is invariant. Hence, when restarting the simulation,
as needed in the construction of Theorem 2.7, all we need is to transfer the
contents of R7 to R1 and we are sure to recover M̂ .

• Five registers are used for the actual simulation; they are calledR0, R2, R4, R5
and R6 (the name R3 is not used). The first, R0, should hold the input in
the beginning (corresponding to R2 in Definition 2.6).

3. Importantly for our purpose, it has a restricted instruction set. Each state is as-
sociated with just a single instruction, out of three instruction types: ZM(X, i, j)
tests whether register X is null; if it is not, it is decremented; execution proceeds
at state i in the first case, or j in the other. Instruction P (X, i) increments X
and proceeds to state i. Instruction Z(X, i, j) just test X, jumping to state i if it
is null and to j otherwise.

When applying the construction of Theorem 2.7, we add the counters V and W as
previously described, but do not modify them on every step, just at a single point in
the program, that has the property that it cuts every potentially non-terminating cycle;
this accomplishes the same goal. We also include a register Y to keep the input (what
was denoted by Rn+1 in the proof of Theorem 2.7).

Reducing the number of registers. We use the standard encoding trick used to
simulate many registers on two. Specifically, registers R0, R2, R4, R5, R6, R7, V , W
and Y will be replaced by two registers only, called A and B. The values of the eight
registers are all represented by a single number, normally placed in A, using exponents
of primes. For this purpose, we assign primes as follows:

register R0 R2 R4 R5 R6 R7 V W Y

prime 11 7 3 2 5 23 17 13 19

This assignment is not (entirely) random. It is intended to reduce the number of
control states in the machine.

Now, we should explain how the two instruction types of Korec’s machine are simu-
lated. It is important to note here that we are simulating Korec’s restricted instructions
with the richer instruction set available to an enhanced counter machine as defined in
this work.

• To simulate an instruction of the type P (X, i) we should multiply A by p, the
prime number associated with register X. This is accomplished by two states, as
depicted in the next diagram, which uses a C-like syntax to express the updates
and conditions for passing from state to state.

//

A--, B+=p

�� A==0 //

B--, A++

�� B==0 // i
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• To simulate an instruction of the type ZM(X, i, j) we should divide A by p,
where p is the prime associated with register X. If the division is even, we should
return the quotient to A and move to state j; if it is not, we should restore A
to its previous value, and move to state i. This is accomplished by p + 2 states,
as shown in the following diagram. The loop in the upper part of the diagram
consists of p states and accomplishes a division by p.

// A-- //

A==0

��

A-- //

A==0

A+=1

))

· · · A-- //

· · ·

A-- //

A==0

A+=p-2

��

A--,B++

��

A==0

A+=p-1

��
B--,A++ 99

B==0

��

B--,A+=p
yy

B==0

��
j i

• Finally, the Z(X, i, j) instruction is simulated by a loop as in ZM , however always
recovering the old value of A on exit.

It is important to note that the loop above cannot be a cause of non-mortality.
We are now ready to calculate the number of states in the resulting machine, shown

in Table 8.
The state numbers correspond to Figure 6 of [39], and the reason that they are

not consecutive is that this is how they are given there. States 1–32 represent Korec’s
machine; states 40–41 perform the update of V,W ; and states 50–63 perform the reset
operations when W is zero. This includes resetting several registers to zero, copying Y
into R0 setting R1 to M̂ and W to 2V + 1.

The “cost” column lists the number of 3CM states used to simulate the instruction.
Note that R1 is not encoded, therefore an operation on R1 costs 1; moreover, we can use
an enhanced counter-machine instruction to perform the addition at 62. At state 63,
we use an ad-hoc implementation, based on the implementation of a ZM instruction,
to repeatedly divide the encoded number by 17 (the prime for V ) and multiply by 169
(the code for W , squared). We also multiply by 13 once again at the exit node.

While constructing this table, I have included a “peephole optimisation”: when an
instruction (of any type) is succeeded by a P instruction, it is possible to use the exit
state of that previous instruction to perform the multiplication that simulates the P .
This optimisation reduces the cost of the subsequent P instruction to zero.

By summing the costs along the table, the sum of 216 states is obtained.
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state instruction cost comments

1 ZM(R1,6,3) 1
3 P(R7,1) 0
4 ZM(R5,40,6) 4 originally ZM(R5,7,6)
6 P(R6,4) 0
7 ZM(R6,4,9) 7
9 P(R5,10) 0
10 ZM(R7,13,12) 25
12 P(R1,7) 0
13 Z(R6,1,14) 7
14 ZM(R4,16,1) 5
16 ZM(R5,23,18) 4
18 ZM(R5,27,20) 4
20 ZM(R5,30,22) 4
22 P(R4,16) 0
23 ZM(R0,1,32) 13
27 ZM(R2,1,32) 9
30 P(R0,31) 0
31 P(R2,32) 2
32 ZM(R4,0,1) 5 jump to 0 is exit

40 P(V,41) 0
41 ZM(W,50,7) 15

50 ZM(R1,51,50) 1
51 ZM(R2,52,51) 9
52 ZM(R4,53,52) 5
53 ZM(R5,54,53) 4
54 ZM(R6,55,54) 7
55 ZM(R7,56,55) 25
56 ZM(R0,57,56) 13
57 ZM(Y,60,58) 21
58 P(R0,59) 0
59 P(R5,57) 2
60 ZM(R5,62,61) 4
61 P(Y,60) 0

62 R1+ = M̂ , goto 63 1
63 W+ = 2V + 1, goto 1 19

Table 8: Korec’s machine with the additions for the mortality proof, and details for
calculation of the machine’s size.
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[37] Frantǐsek Kaščák. Small universal one–state linear operator algorithm. In Ivan M.
Havel and Vaclav Koubek, editors, Proceedings of MFCS ’92. Mathematical Foun-
dations of Computer Science (MFCS ’92), volume 629 of LNCS, pages 327–335,
Berlin, Germany, August 1992. Springer.

[38] Pascal Koiran, Michel Cosnard, and Max Garzon. Computability with low-
dimensional dynamical systems. Theor. Comput. Sci., 132:113–128, September
1994.

[39] Ivan Korec. Small universal register machines. Theoretical Computer Science,
168(2):267–301, 1996.

[40] Stuart A. Kurtz and Janos Simon. The undecidability of the generalized Collatz
problem. In Jin-Yi Cai, S. Barry Cooper, and Hong Zhu, editors, Theory and
Applications of Models of Computation, 4th International Conference, TAMC 2007,
Shanghai, China, May 22-25, 2007, volume 4484 of LNCS, pages 542–553. Springer,
2007.

[41] Jeffrey C. Lagarias. The Ultimate Challenge: The 3x + 1 Problem. American
Mathematical Society, 1st edition, 2010.

[42] Richard J. Lipton. The reachability problem requires exponential space. Technical
Report 63, Yale University, 1976.

[43] J. Marcinkowski. Achilles, turtle, and undecidable boundedness problems for small
DATALOG programs. SIAM Journal on Computing, 29(1):231–257, 1999.

[44] Maurice Margenstern. Frontier between decidability and undecidability: a survey.
Theoretical Computer Science, 231(2):217 – 251, 2000.

51



[45] G. Memmi and G. Roucairol. Linear algebra in net theory. In Wilfried Brauer,
editor, Net Theory and Applications, volume 84 of LNCS, pages 213–223. Springer
Berlin / Heidelberg, 1980.

[46] Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1967.

[47] Cristopher Moore. Unpredictability and undecidability in dynamical systems. Phys.
Rev. Lett., 64(20):2354–2357, May 1990.
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