
Monotonicity Constraints in Characterisations

of PSPACE

Amir M. Ben-Amram a Bruno Loff b,∗ Isabel Oitavem c

aTel-Aviv Academic College
bCWI, Amsterdam

cFCT-UNL and CMAF-UL, Lisbon

Abstract

A celebrated contribution of Bellantoni and Cook was a function algebra to capture
FPTIME. This algebra uses recursion on notation. Later, Oitavem showed that
including primitive recursion, an algebra is obtained which captures FPSPACE.
The main results of this paper concern variants of the latter algebra. First, we
show that iteration can replace primitive recursion. Then, we consider the results of
imposing a monotonicity constraint on the primitive recursion or iteration. We find
that in the case of iteration, the power of the algebra shrinks to FPTIME. More
interestingly, with primitive recursion, we obtain a new implicit characterisation of
the polynomial hierarchy (FPH).

The idea to consider these monotonicity constraints arose from the results on
write-once tapes for Turing machines. We review this background and also note a
new machine characterisation of ∆P

2 , that similarly to our function algebras, arises
by combining monotonicity constraints with a known characterisation of PSPACE.

Key words: complexity classes, implicit characterisations, recursion schemes

1 Introduction

1.1 Motivation and overview

It is an open problem whether P = PSPACE. An algorithm working in poly-
nomial space is allowed to reuse space, and if we look at known algorithms

∗ Corresponding author. Address is CWI, Science Park Amsterdam, Kruislaan 413,
NL-1098 SJ Amsterdam.

Email addresses: benamram.amir@gmail.com (Amir M. Ben-Amram),
bruno.loff@gmail.com (Bruno Loff), oitavem@fct.unl.pt (Isabel Oitavem).

Preprint submitted to Journal of Logic and Computation 11 June 2009

for PSPACE-complete problems, they always seem to rely heavily on this pos-
sibility. Our intuition then indicates that this is a crucial point concerning
the problem P versus PSPACE. A rigorous formulation of this intuition is
the known fact that a “write-once” Turing machine, given polynomial space,
decides exactly P (see Section 2). A write-once machine is one which is not
allowed to erase (or rewrite) cells which have been previously written on.

Since the write-once restriction can, in some sense, be seen as a monotonic-
ity constraint on the contents of the storage, this suggests investigating how
sensitive characterisations of PSPACE are to “monotonicity constraints”.

The core of this paper explores, in particular, the interplay between recursion
and iteration. 1 In Section 4, we take as starting point the recursion-theoretic
characterisation of FPSPACE given in [Oitavem, 1997], and we show that
substituting predicative primitive iteration for predicative primitive recursion
also leads to FPSPACE (note that here we are concerned with function classes
rather than classes of decision problems. All characterisations by means of re-
cursion schemes will, naturally, be of function classes. However, in sections that
discuss characterisations by Turing machines, we use the ordinary language
classes).

In Section 5, we show that imposing a monotonicity constraint on the above
recursion and iteration operators leads, in the case of primitive iteration, to
FPTIME, and, in the case of primitive recursion, to the polynomial hierarchy
FPH. We form a hierarchy based on the nesting-level of the restricted primitive
recursion operator, and this provides a new implicit characterisation of all
levels of the polynomial hierarchy. This result resembles previous work by
Bellantoni [1995], and we discuss the connection. To conclude, we present a
novel machine characterisation of ∆2.

1.2 Preliminaries

We use W to denote the set of binary words {0, 1}∗. For z ∈W, we use z′ to
denote its numerical successor, defined recursively in the following way:

ε′ = 0 (w0)′ = w1 (w1)′ = w′0

We use z− to denote the numerical predecessor (the word such that (z−)′ = z,
for z 6= ε). The numerical order over W is denoted by 6.

Given x ∈ W, |x| is the length of x, and for x1, . . . , xk ∈ W, we set |~x| =
|x1, . . . , xk| =

∑k
i=1 |xi|.

A function f : Wn → W, for any n > 0, is polynomially bounded if there is a
polynomial p such that |f(~x)| 6 p(|~x|) for all ~x.

1 Which is a time-honoured subject of sub-recursion theory [e.g. Gladstone, 1971].

2

2 Polynomial Write-Once Space

The class of polynomial time problems, P, is the class of subsets of W
decidable by a Turing machine in polynomial time. It is well-known that clas-
sification by polynomial time or space is robust with respect to the number of
tapes or tape heads of the Turing machine.

Definition 1 A write-once Turing machine is a Turing machine equipped
with an input (read-only) tape and a write-once work-tape. The work-tape has
one reading-head (that can only read), and one writing-head. The writing-head
moves exclusively to the right, cannot be moved without writing (though it can
stay put), and cannot write a blank 2 . The class of polynomial write-once
space problems, PWOS, is the class of sets decidable by write-once Turing
machine in polynomial space.

We prove in this section that polynomial write-once space is equivalent to
polynomial time on Turing machines. This result is essentially due to Irani,
Naor and Rubinfeld [1992], who proved the same connection for a certain
type of random-access machine. We provide the proof for write-once Turing
machines for completeness, and also because it motivated our work in the
subsequent sections. In addition, near the end of this paper, we will use this
model as a basis for a new machine characterisation of ∆2.

Proposition 2 P ⊆ PWOS.

Proof. We begin by showing that write-once Turing machines (of the dual-
head variant) with polynomial space complexity can decide any set in P. Let
A ∈ P andM a single-tape, single-head Turing machine with tape alphabet Γ
that decides if x ∈ A in time nk, where n = |x|. We assume that M’s tape is
semi-infinite (does not extend to the left of the initial position). We simulate
M in polynomial write-once space. Our write-once Turing machine, M†, will
have 2|Γ|+ 1 work symbols. Two symbols α and α̇ for each symbol α ∈ Γ and
one additional separator symbol].

The principle of the simulation is that each successive tape-configuration of
M (the tape contents and head position) is written out in full on M†’s tape.
Successive configurations are separated by the separator symbol,]. A dotted
symbol (α̇) is used to mark the head position in each configuration.

]

conf. 1︷ ︸︸ ︷
. . .]

conf. 2︷ ︸︸ ︷
.]

conf. i︷ ︸︸ ︷
. . .

2 We can also consider a single-head variant where a single head can be used in two
“modes,” either scanning a portion of the tape in a read-only manner, or writing in
a previously-blank cell. Unlike the two-head machine, this model can scan a blank
portion of the tape without writing anything. Despite this subtle difference, the
results presented here apply to both.

3

The machine creates the initial configuration by writing] and then copy-
ing the input while marking the first symbol. At the end of this stage, the
reading-head scans the] while the writing-head scans a blank cell following
the configuration. Throughout the simulation, the simulator maintains in its
control the current control-state of M.

Next, each step of M is simulated in the following way:

(1) a separator (]) is written by the writing-head.
(2) Moving both heads simultaneously to the right, the tape contents of the

last configuration are copied to a new configuration, until the reading-
head finds a marked symbol α̇. When starting step i of this copying
phase, the writing-head is ready to write the i − 1st symbol of the new
configuration, while the reading-head scans the ith symbol of the last
configuration (the value of the i− 1st symbol of the last configuration is
maintained in the machine’s control). Next, the writing-head writes the
i− 1st symbol of the last configuration to the new configuration; the ith
symbol, seen by the reading-head, is recorded in the machine’s control
and the head moves to the i+ 1st symbol.

(3) Once the position of M’s head has been reached, M† simulates the ap-
propriate transition ofM, copying, if necessary (i.e., on a right move) also
the symbol following the head’s position. So, for instance, if the vicinity
of the reading-head is

· · · σ α̇ α π · · ·
and the transition of M replaces α with γ and moves to the right, then
the reading-head advances up to the π, while the writing-head writes

· · · σ γ α̇

(and is now located on the blank cell following the α̇). HadM moved to
the left, the writing-head would have written σ̇γα instead.

If M accepts or rejects, then M† does the same. Otherwise, M’s new
control state is recorded in M†’s.

(4) Moving both heads simultaneously to the right again, the rest of the
configuration is copied, until the reading-head finds the separator.

This simulation is obviously done in polynomial space (approximately the
product ofM’s time and space), and the restrictions of the write-once model
are obeyed 3 . 2

Proposition 3 PWOS ⊆ P

Proof. A write-once Turing machineM with s states and working in space nk

can perform at most s · nk+1 computational steps without writing to the tape
and without looping. Since it is write-once, it can only write on the tape at
most nk times. So, without looping, the machine can perform at most s ·n2k+1

steps. Thus, PWOS ⊆ P. 2

3 If the single-head model were to be used, the ability to leave a gap, that is, skip
over a blank cell, could be exploited to keep track of the position copied from.

4

Theorem 4 P is the class of problems which can be solved in polynomial
write-once space. 2

So, we have the following nice intuition about time versus space:

Limiting time is the same as limiting the number of re-writes, or, limiting
time rather than space is the same as loosing your eraser.

A way of explaining the difference between a read/write memory and a write-
once memory is that the contents of the latter change monotonically. Theo-
rem 4 shows that imposing this monotonicity constraint on a formulation of
PSPACE yields a characterisation of P. This motivates us to consider mono-
tonicity in conjunction with a different way of characterising space-bounded
computation: namely by recursion schemes. This is the subject of the next
three sections.

3 Function Algebras

A function algebra is a characterisation of a set of functions by the inductive
closure, under some operators, of an initial set of functions. This concept is fre-
quently used in recursion theory, and more recently to obtain characterisations
of complexity classes [Clote, 1999].

Definition 5 Let F be a class of functions, let F ⊆ F be a set of such
functions, and let O ⊆ ∪k∈N{O : F k → F} be a set of operators. The induc-
tive closure of F under O, written A = [F; O], is the smallest set containing
F, such that if f1, . . . , fk ∈ A are in the domain of the k-ary O ∈ O, then
O(f1, . . . , fk) ∈ A.

We also refer to [F; O] as a function algebra; the carrier of the algebra is
A and its operations are O. 4

In this work, F and O are always finite.

We make liberal use of the square brackets, e.g., if f, g are functions, F is a
class of functions, and O1, . . . , Ok are operators, then we set

[f, g,F;O1, . . . , On] = [{f, g} ∪ F; {O1, . . . , On}].

Definition 6 Let A = [F; O] be a function algebra, for a set F = {f1, f2, . . .}
of functions and a set O = {O1, O2, . . .} of operators. We write DA to stand
for the set of descriptions for A, where a description is a term in a term
algebra containing

(1) an atom funi for each fi ∈ F, which is said to describe fi;
(2) for each operator Oi ∈ O of arity k, the terms Opi(d1, . . . , dk), for any

descriptions d1, . . . , dk which describe g1, . . . , gk in the domain of Oi. This

4 A rigorous notation for the algebra would be (A, O) = ([F; O], O); but the dis-
tinction will be ignored to simplify notation. No confusion should arise.

5

term is said to describe Oi(g1, . . . , gk).

Descriptions have natural syntactic measures of complexity, and these can
induce complexity measures for the function algebra. A frequently considered
measure is the nesting-depth of a certain operator (or a set of operators, but
this generality is not necessary in this paper).

Definition 7 Let A = [F; O] be a function algebra, with O = {O1, O2, . . .},
and let Or ∈ O. The rank of a description d ∈ DA with respect to Or, rk(d),
is inductively defined as

(1) rk(funi) = 0,
(2) if i 6= r, then rk(Opi(d1, . . . , dk)) = max(rk(d1), . . . , rk(dk)), and
(3) rk(Opr(d1, . . . , dk)) = max(rk(d1), . . . , rk(dk)) + 1.

The rank of a function f ∈ A with respect to Or, rk(f), is given by

rk(f) = min{rk(d) : d describes f}.

Definition 8 Let A = [F; O] be a function algebra, and let Or ∈ O. The rank
hierarchy in A with respect to Or is the sequence Hn defined by

Hn = {f ∈ A : rk(f) 6 n}.

The next proposition explains the rank hierarchy in terms of the inductive
closure: the next level of the hierarchy is obtained by allowing one further
application of Or and closing under the other operators.

Proposition 9 Let A = [F; O] be a function algebra, let Or ∈ O, and set
V = O− {Or}. The rank hierarchy in A with respect to Or can be inductively
defined by:

(1) H0 = [F;V],
(2) In = Hn ∪ {Or(f1, . . . , fk) : (f1, . . . , fk) ∈ (Hn)k ∩Dom(Or)}, and
(3) Hn+1 = [In;V].

We will skip the proof, which is a simple induction. 2

The advantage of expressing the hierarchy as above (in contrast with Def-
inition 8) is the convenience of proving statements about the hierarchy by
induction on the rank.

3.1 Two-sorted function algebras for polynomial time

Take F to be the class of functions with two argument sorts, as in [Bellantoni
and Cook, 1992]: Each function f ∈ F , where f : Wn → W, is associated
with a number k, 0 6 k 6 n, so that the first k arguments of f are of the
normal sort, and the remaining arguments are of the safe sort; we indicate
the division by a semicolon, writing F (x1, . . . , xk;xk+1, . . . , xn) or just F (~x; ~y).
Such functions will be called in this paper “two-sorted functions.”

6

We equate classes of two-sorted functions with classes of ordinary (one-sorted)
functions in the following sense:

Definition 10 Let F be a class of functions and F be a class of two-sorted
functions.

(1) We write F ⊆ F when every f ∈ F is also in F , for some division of its
arguments into sorts.

(2) We write F ⊆ F when every function f(~x; ~y) ∈ F is in F when we ignore
the sorts (i.e., f(~x, ~y) ∈ F).

(3) We write F ' F when F ⊆ F and F ⊆ F.

Notice that for any given F there is a unique F satisfying F ' F (which is
just F with no sorts). So, for two classes F ,F ′ of two-sorted functions, we
will write F ' F ′ if F ' F and F ′ ' F for the same F. This induces an
equivalence relation.

Consider the set B of basic functions, containing (i–viii) defined below:

i. (source)
ε (a zero-ary function)

ii. (projections)
πk,n

i (x1, . . . , xk;xk+1, . . . , xk+n) = xi, for each 1 6 i 6 k + n
iii. (normal binary successors)

Si(x;) = xi, i ∈ {0, 1}
iv. (bounded safe binary successors)

Si(z;x) =

xi if |x| < |z|

x otherwise

v. (binary predecessor)
P (; ε) = ε, P (;xi) = x

vi. (numerical predecessor)
p(; ε) = ε, p(;x′) = x

vii. (conditional)
Q(; ε, y, z0, z1) = y,Q(;xi, y, z0, z1) = zi

viii. (tally product)
×(x, y;) = 1|x|×|y|.

Now consider the following operators:

ix. (predicative composition) Given g, ~r, ~s, their predicative composition,
f = C(g, ~r, ~s) is defined by
f(~x; ~y) = g(~r(~x;);~s(~x; ~y)).

x. (predicative recursion on notation) Given g, h0, h1, the predicative
recursion on notation scheme defines a function f = R(g, h0, h1) by
f(ε, ~x; ~y) = g(~x; ~y),
f(zi, ~x; ~y) = hi(z, ~x; ~y, f(z, ~x; ~y)).

xi. (predicative primitive recursion) Given g, h, the predicative primitive
recursion scheme defines a function f = R(g, h) by

7

f(ε, ~x; ~y) = g(~x; ~y),
f(z′, ~x; ~y) = h(z, ~x; ~y, f(z, ~x; ~y)).

Note that the function’s value is treated as sort-less. Note also that if g(~x; ~y),
then the function f defined by f(~x, ~y;) = g(~x; ~y) can be obtained by composi-
tion and projections. Thus, when discussing any class F that includes at least
B and closed under predicative composition (such as all classes discussed in
this paper), if one knows that some unsorted function h has a counterpart in
F , it is certain that h(~x;) is in F .

Looking at the two recursion schemes (x and xi), note that only normal argu-
ments can be used as induction variables, while the result of a recursive call is
put in a safe position. Thus, informally, it is not possible to effect a “double
recursion” leading to exponential growth in the length of the words.

It is possible to compute any polynomial in the following sense:

Lemma 11 For any polynomial r : N → N, the two-sorted function (~x;) 7→
1r(|~x|) is in [B; C,R]. 2

Based on [Bellantoni and Cook, 1992] and [Oitavem, 1997], we have:

Theorem 12 (i) FPTIME ' [B; C,R]. (ii) FPSPACE ' [B; C,R,R]. 2

Where FPSPACE denotes the class of polynomially bounded functions com-
putable in polynomial space.

Given a class F of polynomially-bounded functions, use FPTIME(F) to denote
the set of functions Cook-reducible to some f ∈ F, that is, computable in
polynomial time given an f oracle. We may extend the result from [Bellantoni
and Cook, 1992] in the following way.

Theorem 13 Let F be a class of polynomially-bounded functions, and F a
class of two-sorted functions. Suppose that

(I) for all f ∈ F there exists F (w; ~x) ∈ F and a polynomial p such that

∀~x∀w |w| > p(|~x|) =⇒ f(~x) = F (w; ~x).

Then FPTIME(F) ⊆ [B ∪ F ; C,R].

Less formally, this states that if we take some class F, then the closure of F
under Cook reductions is obtained by adding the basic functions B to F, and
closing under predicative composition and predicative recursion on notation
— so Bellantoni and Cook’s characterisation of FPTIME relativises, in some
sense. For proving Theorem 13, and other theorems in this paper, we need the
following observation, which gives the connection of FPTIME to [B; C,R] in
more detail:

Theorem 14 (Bellantoni and Cook [1992]) Item (I) of Theorem 13 above
holds for F = FPTIME, F = [B; C,R].

Proof of Theorem 13. Let P denote the inductive closure [B ∪ F ; C,R].

LetM be a polynomial-time single-tape oracle Turing machine, that computes

8

a function f in polynomial time by means of a function oracle g ∈ F. Such a
machine has a work tape, an oracle tape and an output tape. Let us clarify
the usage of the oracle: the machine has a special query state. Whenever it
enters this state, the contents of the oracle tape are interpreted as a query ~x
and instantaneously replaced by the result g(~x).

Using (I), let G ∈ F be such that G(w; ~x) = g(~x) for all ~x and |w| > pG(|~x|).
Suppose that the machine has tape alphabet Γ and states Q. Let b be fixed so
that 2b > |Γ∪Q|. We encode a configuration ofM as a word q#x#y#u#v#w,
where q is the current state, x, y represent portions of the work-tape before
and after the head position (the head is scanning the first symbol of y), and
similarly u, v for the oracle tape; w is the contents of the output tape (which is
write-only). Each symbol of this word is encoded in binary, using b bits. Since
M is polynomial-time, and g is polynomially bounded, we can fix a polynomial
p2 such that every reachable configuration on input ~x can be encoded (with
padding if necessary) in exactly pc(|~x|) bits.

This encoding can be manipulated by the following functions, all in P (this is
easy to justify by Theorems 12(i) and 14, since the functions are polynomial-
time computable).

(1) A function initial such that initial(~x;) encodes the initial configuration
of M for the input ~x;

(2) A function step and a polynomial pst such that, given a word c encod-
ing some configuration of M, a word a, and any word |w| > pst(|c, a|),
step(w; c, a) will encode the next configuration ofM. If c is in the query
state, then a is interpreted as the word written on the answer tape. If c
is in a final state, then step(w; c, a) = c.

(3) A function query and a polynomial pqr such that, given a word c encoding
some configuration ofM, and any word |w| > pqr(|c|), query(w; c) is the
word in the query tape of M for this configuration.

(4) A function out such that, given a word c encoding some configuration of
M, out(c;) is the word in the output tape of M for this configuration.

Now define, by predicative recursion on notation:

F (ε, w, ~x;) = initial(~x;)

F (zi, w, ~x;) = step(w; F (z, w, ~x;), G(w; query(w;F (z, w, ~x;))))

Let c = F (z, w, ~x;) be a valid configuration. Then

(1) From our assumption on the coding of configurations, |c| = pc(|~x|);
(2) we may also assume that, if |w| > pG(|c|)+pqr(|c|), |G(w; query(w; c))| 6
|c|, since both the query and its answer must fit in the configuration;

(3) and thus, whenever |w| > pst(2|c|), step(w; c,G(w; query(w; c))) will cor-
rectly encode the configuration of M that follows configuration c.

It follows that for a sufficiently large polynomial p(n), and |w| > p(|~x|),
F (z, w, ~x;) encodes the configuration of M with oracle g on input ~x after

9

|z| steps. And so, if r is a polynomial such that r(|~x|) bounds the running
time of M on input ~x, we have

f(~x) = out(F (1r(|~x|), 1p(|~x|), ~x;);).

Since M and g are arbitrary, we conclude that FPTIME(F) ⊆P. 2

4 Two-Sorted Algebras for FPSPACE

We will next consider a modification of the algebra [B; C,R,R] by replacing
the primitive recursion scheme with an iteration construct. Informally, iter-
ation differs from recursion in that the recursive procedure can not use the
recursion variable in computations. In imperative programming terms, this is
akin to having a “repeat n times” control structure instead of “for z = 1, . . . , n
do”. Formally, we introduce the following operator:

xii. (predicative iteration) Given g, h, the predicative iteration scheme de-
fines a function f = I(g, h) by
f(ε, ~x; ~y) = g(~x; ~y),
f(z′, ~x; ~y) = h(~x; ~y, f(z, ~x; ~y)).

Definition 15 (1) A denotes the function algebra [B; C,R,R];
(2) B denotes the function algebra [B; C,R, I].

We already know (Theorem 12) that A ' FPSPACE. We show that this is
also the case for B.

Theorem 16 B ' FPSPACE

Proof. We know that A ' FPSPACE. Now clearly B ⊆ A, since it is trivial
to define predicative iteration using predicative primitive recursion, and thus
B ⊆ FPSPACE. To see that FPSPACE ⊆ B, we show that one may simulate
any polynomial-space Turing computation. Choose any Turing machine M
computing some FPSPACE function f . As in the proof of Theorem 13, we
may fix a method of encoding configurations ofM so that the following hold.
First, any configuration in the computation ofM over some input ~x is encoded
by a binary word of size exactly p(|~x|), for some fixed polynomial p. Secondly,
there exist in B
(1) A function initial such that initial(~x;) encodes the initial configuration

of M for the input ~x.
(2) (by Theorem 14) A function step and a polynomial q such that, given a

word c encoding some configuration of M, and any word |w| > q(|c|),
step(w; c) will encode the next configuration of M.

(3) A function out such that, given a word c encoding some configuration of
M, out(c;) is the word in the output tape of M for this configuration.

10

So we may see that

F (ε, w, ~x;) = initial(~x;) F (z′, w, ~x;) = step(w;F (z, w, ~x;))

defines a function F by predicative iteration, and thus F ∈ B. But it is easy
to show by induction that, provided that |w| > q(p(|x|)), F (z, w, ~x;) encodes
the configuration of M after m steps of computation over the input ~x, where
m is the number of numeric predecessors of z. So if r is a polynomial such that
2r(|~x|) bounds the number of steps required for M to finish its computation,
then we define

f ′(~x;) = out(F (1r(|~x|), 1q(p(|~x|)), ~x;);),

we always have f(~x) = f ′(~x;), and thus FPSPACE ⊆ B. 2

5 Restrictions of Two-Sorted Algebras for FPSPACE

Consider the following partial order over W.

Definition 17 For w, v ∈ W, We write w � v if |w| < |v|, or |w| = |v| and
∀i(vi 6 wi). We write w ≺ v if w � v but w 6= v.

Then (W,�) is a partial order; e.g. 0011 � 0111 and 0011 � 1011 � 1111,
while 0011 and 0110 are incomparable.

Lemma 18 Let w(1) � w(2) � · · · � w(`) � v. The number of distinct words
in the sequence is at most 1

2
(n+ 1)(n+ 2), where n = |v|.

Proof. The number of distinct words of any given size k in a �-ordered chain
is at most k + 1 (because we can switch a 0 to a 1 but not vice versa). So an
upper bound on the number of distinct words in the given chain is:

n∑
k=0

(k + 1) =
1

2
(n+ 1)(n+ 2) 2

In fact, given any size n, there is a sequence with exactly 1
2
(n + 1)(n + 2)

distinct elements; e.g., for n = 3,

ε, 0, 1, 00, 01, 11, 000, 001, 011, 111.

Definition 19 A two-sorted function h, with at least one safe argument, is
called monotone whenever z � h(~x; ~y, z) for all z ∈W.

Definition 20 We define the following operators over two-sorted functions:

xiii. (restricted predicative primitive recursion) The restricted predica-
tive primitive recursion operator, R̃, is defined as R̃(g, h) = R(g, h) if h
is monotone, and undefined otherwise.

xiv. (restricted predicative iteration) The restricted predicative iteration
operator Ĩ, is defined as Ĩ(g, h) = I(g, h) if h is monotone, and undefined
otherwise.

11

We will study the consequences of replacing R and I by their respective
restricted versions. The reader may find the resulting classes suspicious from a
computability point of view, since it is undecidable whether a given description
defines a monotone function, and therefore, whether the application of an
operator is valid. In programming language terms, one cannot decide whether
a given description is a well-formed program. This motivates us to incorporate
the monotonicity into the definition of the recursion operator, as shown next.

Definition 21 Let h be a two-sorted function with at least one safe argument.
Its monotone section is the function

hm(~x; ~y, z) =

h(~x; ~y, z) if z � h(~x; ~y, z),

z otherwise.

Clearly, hm is always monotone.

Definition 22 (monotone recursion and iteration schemes) Given
g, h, the predicative monotone primitive recursion scheme is defined byRm(g, h) =
R(g, hm). The predicative monotone iteration scheme is Im(g, h) = I(g, hm).

The above operators coincide with the restricted ones if h is monotone, but
are defined for any h and, clearly, in an effective manner.

Definition 23 We define the following function classes:

mA (“monotone A”) is [B; C,R,Rm]

mB (“monotone B”) is [B; C,R, Im]

rA (“restricted A”) is [B; C,R, R̃], and

rB (“restricted B”) is [B; C,R, Ĩ].

Since the restricted operators coincide with the monotone ones over their
domain, we immediately have rA ⊆ mA and rB ⊆ mB. As a consequence of
our complexity-class characterisations, we will be able to show that mA ' rA
and mB ' rB.

Before embarking on the study of these classes, we mention a useful lemma
from [Oitavem, 1997].

Lemma 24 If f(~x; ~y) is in A, then there exists a polynomial pf such that

|f(~x; ~y)| 6 max{pf (|~x|),max
i
|yi|}.

Since B, rA, rB ⊆ A, the lemma also holds for these classes. It is not hard to
verify (though this requires perusing the proof) that it also holds for mA and
mB.

12

5.1 The strength of restricted primitive iteration

The next theorem tells us, in essence, that FPTIME is closed under restricted
and monotone predicative primitive iteration.

Theorem 25 mB ' rB ' FPTIME

Proof. It is clear that FPTIME ⊆ rB, since rB includes [B; C,R]. Recall
that rB ⊆ mB. We next show by induction on the structure of mB that
mB ⊆ FPTIME. The functions in B are trivially in FPTIME. The inductive
steps for the operators of predicative composition and predicative recursion
on notation were shown in [Bellantoni and Cook, 1992]. Now, suppose that
g(~x; ~y), h(~x; ~y, w) ∈ rB are both polynomial-time computable, and let f =
Im(g, h) = I(g, hm). We will prove that f is polynomial-time computable,
completing the inductive step for monotone iteration.

Note that from the assumption h ∈ FPTIME it easily follows that hm ∈
FPTIME. Choose, by Lemma 24, a polynomial pf such that

|f(z, ~x; ~y)| 6 max{pf (|z, ~x|),max
i
|yi|}.

For brevity, let k = max{pf (|z, ~x|),maxi |yi|}. Define the sequence

sε = f(ε, ~x; ~y) = g(~x; ~y),

sz′ = f(z′, ~x; ~y) = hm(~x; ~y, sz).

Then this sequence forms a chain

sε � s0 � . . . � sn � . . . � 1k,

and by Lemma 18, this sequence contains as most 1
2
(k + 1)(k + 2) ∈ O(k2)

different elements. But notice that sv′ only depends on sv, and so if at some
point sv = sv′ , then sz = sv for all z > v. Thus, the O(k2) different elements in
the chain must all be in its beginning, and we may obtain sz simply by calcu-
lating sε, s0, s1, s00, . . . until we stop when some sv = sv′ . Every calculation is
polynomial-time in |~x, ~y, z| since g, hm ∈ FPTIME and |si| 6 k is polynomial
in |z, ~x, ~y|. 2

5.2 The strength of restricted primitive recursion

While imposing the monotonicity restriction on the iteration construct col-
lapsed the function class down to FPTIME, we will show that restricted primi-
tive recursion yields a class presumably between FPTIME and FPSPACE: the
polynomial hierarchy. Let us recall some definitions:

Definition 26 We define Σ0 = Π0 = ∆0 = P, Σi+1 = NP(Σi), Πi+1 =
co-NP(Σi), and ∆i+1 = P(Σi). We let PH = ∪i∆i = ∪iΣi.

13

Corresponding function classes are 2i = FPTIME(∆i) = FPTIME(Σi−1), and
FPH = ∪i2i = FPTIME(PH).

In many texts, these class names are adorned with a P superscript (e.g., ΣP
i)

for distinction from the arithmetic hierarchy; since this paper only concerns
the polynomial hierarchy, we omit the superscript.

If R is an n-ary relation over W, χR(~x;) denotes its characteristic function,
with all arguments normal. That is, χR(~x;) = 1 ⇔ R(~x) and otherwise
χR(~x;) = 0.

We next recall the characterisation of PH by polynomially-bounded quanti-
fiers.

Definition 27 Let R be a (1 + n)-ary relation, q be some polynomial. Define
the n-ary relation ∃qyR by

~x ∈ ∃qyR ⇐⇒ (∃y : |y| 6 q(|~x|)) (y, ~x) ∈ R.

Similarly, define ∀qyR by

~x ∈ ∀qyR ⇐⇒ (∀y : |y| 6 q(|~x|)) (y, ~x) ∈ R.

Theorem 28 (Stockmeyer [1976], Wrathall [1976]) L ⊆ W is in Σn if
and only if there is a (1 + n)-ary relation R ∈ P and polynomials qi such that

L = ∃q1y1∀q2y2 . . . QnynR

where the ith quantifier Qi is ∀qi
if i is even, and ∃qi

if i is odd.

It is well-known that FPTIME ⊆ FPH ⊆ FPSPACE, but it remains open
whether these inclusions are proper. In this section we show that restricting
the primitive recursion by monotonicity changes the function class A from
FPSPACE to FPH. Moreover, we will show that the rank hierarchy in rA
corresponds precisely to the 2n hierarchy.

Definition 29 rAn denotes the n-th level of the rank hierarchy with respect
to R̃ within rA; specifically, following Proposition 9, we define:

(1) rA0 = [B; C,R],
(2) rA′n+1 = rAn ∪ {R(g, h) : g, h ∈ rAn and h is monotone}, and
(3) rAn+1 = [rA′n+1; C,R].

Classes mAn (and mA′n) are similarly defined with respect to Rm.

Theorem 30 For all n, 2n+1 ⊆ rAn.

Proof. We will show, by induction on n, that

(I) for all R ∈ Σn there exists F (w; ~x) ∈ rAn and a polynomial p s.t.

∀~x∀w |w| > p(|~x|)⇒ χR(~x) = F (w; ~x).

Since 2n+1 = FPTIME(Σn), Theorem 30 will follow from Theorem 13.

14

For n = 0 this is Theorem 14. For the induction step, assume that (I) holds
for every R ∈ Σn. By using the conditional and composition, we can negate
F (w; ~x) into Q(;F (w; ~x), 1, 1, 0), and we then find that (I) also holds for Πn.

Now take an arbitrary predicate P = ∃qyR ∈ Σn+1, where R ∈ Πn. I.e.,

~x ∈ ∃qyR ⇐⇒ (∃y : |y| 6 q(|~x|)) (y, ~x) ∈ R.

Make the standard assumption that (y, ~x) 6∈ R whenever |y| > q(|~x|). Since
(I) holds for Πn, let F ∈ rAn obey F (w; y, ~x) = χR(y, ~x) for any |w| >
pF (|y, ~x|). Using the conditional and predicative composition, we can assume
that F (w; y, ~x) ∈ {0, 1} for every input.

Define f by restricted predicative primitive recursion in the following way:

f(ε, w; ~x) = ε

f(z′, w; ~x) = Q(; p(; f(z, w; ~x)), F (w; z, ~x), f(z, w; ~x), f(z, w; ~x))

=

F (w; z, ~x) if f(z, w, ~x;) ∈ {ε, 0}
f(z, w; ~x) otherwise.

Note that since F (w; y, ~x) ∈ {0, 1}, then f is monotone. It is obtained by
composition of functions in rAn: the conditional Q and predecessor p are in
B, and F is in rAn. Thus f ∈ rA′n. It is easy to show by induction that, for
|w| > pF (|z, ~x|),

f(z, w; ~x) =

1 if (∃y < z) R(y, ~x)

0 otherwise.

Thus G(z; ~x) = f(z, 1pF (2|z|); ~x), is the characteristic of P , when |z| > |~x| and
|z| > q(|~x|) + 1. G is in rAn+1, as we intended. 2

Theorem 31 For all n, mAn ⊆ 2n+1.

Proof. We have mA0 = [B; C,R] ' FPTIME = 21. We next assume that
mAn−1 ⊆ 2n and prove that mA′n ⊆ 2n+1. To this end, we let g, h ∈ 2n and
prove that f = Rm(g, h) is in 2n+1.

By assumption, g, h can be computed in polynomial time with an oracle A in
Σn−1. Clearly, so can hm.

The equality f = Rm(g, h) means that f(z, ~x; ~y) = sz, where sz is obtained
from the sequence

sε = g(~x; ~y) si′ = hm(i, ~x; ~y, si)

which is monotone, namely

sε � s0 � s1 � s00 � s01 � . . . � si � . . . � sz.

The size of each element in this sequence is polynomially bounded in |z, ~x, ~y|,
by Lemma 24. By Lemma 18, we know that si can only change a number

15

of times quadratic in |sz|. So if we take I = {i0, . . . , ik} to be the sequence
containing ε, z, and the indices i between ε and z at which si 6= si− , then k is
bounded by O(|sz|2), and hence polynomial in |z, ~x, ~y|.
Our goal is to compute f(z, ~x; ~y) by first computing si0 = sε = g(~x; ~y) and
taking i0 = ε, and then obtaining all the ij’s and sij ’s in sequence until we
reach sik = sz = f(z, ~x; ~y). We will show is that given ij and sij , it is possible
to obtain ij+1 and sij+1

in polynomial time p(|z, ~x, ~y|) with access to a Σn

oracle. Thus the whole sequence can be generated in kp(|z, ~x, ~y|)) time, which
is polynomial in |z, ~x, ~y|.
Let B be the following oracle:

(~x, ~y, a, b, s) ∈ B ⇐⇒ (∃i : a 6 i 6 b) hm(i, ~x; ~y, s) 6= s

Since hm ∈ 2n, the predicate “hm(i, ~x; ~y, s) 6= s” is in ∆n, and thus B ∈ Σn,
so also A⊕B ∈ Σn, where ⊕ is the join operation (x0 ∈ A⊕B ⇔ x ∈ A; and
x1 ∈ A⊕B ⇔ x ∈ B).

Given access to the oracle A⊕B, and given ij, sij , we may use binary search
to find the least i where ij < i 6 z and hm(i, ~x; ~y, sij) 6= sij . This is exactly
ij+1, and the binary search is done in time O(|z|2) on an oracle Turing ma-
chine. Finally, by hypothesis, sij+1

= hm(ij+1, ~x; ~y, sij) can be computed with
oracle A⊕ B in time polynomial in |ij+1, ~x, ~y, sij |, which is again polynomial
in |z, ~x, ~y|.
So mA′n+1 ⊆ 2n+1, and by closure properties of the latter, mAn+1 ⊆ 2n+1. 2

Combining the two inclusions, and the trivial rAn ⊆ mAn, we obtain

Theorem 32 For all n, mAn ' rAn ' 2n+1; hence, mA ' rA ' FPH.

5.3 Bellantoni’s characterisation of 2n

Bellantoni [1995] characterises the polynomial hierarchy by recursion schemes,
in a way which resembles our results. Instead of restricted primitive recursion,
Bellantoni includes the minimisation operator:

f(~x; ~y) =

(µb. h(~x; ~y, b) mod 2 = 0)1, if there is such a b

0 otherwise

Bellantoni shows that the behaviour of the minimisation operator over func-
tions of the class considered is such that the search can be bounded to values
of size polynomial in the size of the input. Provided with such a bound, it is
easy to simulate such a minimisation using restricted primitive recursion. Con-
versely, the algorithm in the proof of Theorem 31, together with Bellantoni’s
results, show that the inverse simulation is also possible.

16

6 Concluding remarks

We began by the observation that polynomial write-once space is equivalent to
polynomial time, and observed that the essential feature of write-once mem-
ory is monotonicity. We then applied monotonicity constraints to two im-
plicit characterisations of PSPACE: one based on predicative iteration and
the other on predicative primitive recursion. We obtained different results,
however, which may at first sight seem surprising. In retrospect, we would say
that the restricted primitive recursion can still make an essential use of the re-
cursion variable (in contrast with restricted iteration); note that the recursion
variable changes (as a word) in a non-monotone way. Thus, while restricted
iteration does not transcend FPTIME, restricted primitive recursion has the
power to capture the polynomial hierarchy.

We would like to know whether recursion on notation is an indispensable
operator in the definitions of A,B, rA and rB. E.g., to which extent do we need
to change our set B of basic functions into B′ so that rA = [B; C,R, R̃] =
[B′; C, R̃]?

We conclude the paper by proposing a new machine characterisation of ∆2.

6.1 Machine characterisation of ∆2

After the characterisation of 2n+1, we asked whether we could go back to ma-
chines, and obtain a new machine characterisation of (levels of) the polynomial
hierarchy.

We have not found an elegant machine characterisation of ∆n+1 in general.
However, the case of ∆2 seems sufficiently interesting. It fits the overall pro-
gram of our research, since it results of plugging write-once tapes into the
safe-storage machines of Cai and Furst [1991] which characterise PSPACE.
We now sketch this construction.

Definition 33 A write-once safe-storage machine is a Turing machine with
a read-only input tape, two write-once tapes called the work tape and the
safe-storage tape, and one clock (a read-only tape that is used as a counter).

A computation of such a safe-storage machine begins with the input x written
on the input tape, and with empty write-once tapes and clock. The computa-
tion continues either until the machine accepts or rejects, or until it enters a
special tick state. Upon entering this state the work tape is erased, the clock
is incremented to the numerically next word, all tape heads are reset to their
initial positions, and the computation resumes in the initial state of the finite
control 5 .

5 A write-once tape may be of a single-head or double-head variety (see Section 2).
In the latter case, the writing-head is not reset, but stays on the first blank tape
cell.

17

We let D denote the class of sets decidable by write-once safe-storage ma-
chines where the total amount of space (work tape, safe storage and clock) is
polynomially bounded.

Theorem 34 Write-once safe-storage machines using polynomial space de-
cide exactly ∆2.

Proof. Consider a polynomial-space computation by a safe-storage machine,
and partition it at the points in time when the machine ticks the clock. In
between ticks, the computation takes the contents of the clock z, the input x,
and the contents of the safe-storage tape s and returns the new contents of the
safe storage tape, say s′. This part of the computation can be simulated by a
write-once Turing machine in polynomial space, so by Theorem 3 we find that
the function h(z, x, s) = s′ is computable in polynomial time. Furthermore,
since the safe-storage tape is write-once, h is a monotone function. Using the
monotone recursion scheme we can easily conclude that every characteristic
function of a language in D belongs to rA1 ' 22. Thus D ⊆ ∆2.

For the opposite inclusion, we simulate a polynomial number of queries to a
Σ1 oracle using the clock and the work tape. Let A be an arbitrary Σ1 oracle,
given by A = ∃pR, where R ∈ P, and let M be a Turing machine deciding
some set in polynomial time with oracle A. We may assume without loss of
generality that the maximal number m of oracle queries in any computation of
M is a known polynomial of the size of the input, and similarly that all queries
have a fixed size k that is also a known polynomial function of the input size.
In order to simulate m queries q1, . . . , qm each of size k we use a |m|+p(k)-sized
counter, divided into two parts i, y the first of size |m| (sufficient for holding
m in binary) and the second of size p(k). We then simulate M using the safe
storage tape, as in the proof of Theorem 2. When M makes the i-th query
qi, we tick the counter until it holds the word i0p(k). Then we keep ticking the
counter, and for every tick we check whether (y, qi) ∈ R, where y is taken from
the counter and qi from the safe-storage tape. This sub-computation is done
using the write-once work tape, again as in Theorem 2. If we have a positive
answer, then y witnesses that qi ∈ A; we stop our search, write a 1-bit in
the safe-storage tape as the answer from the oracle, and continue simulating
M. If the counter reaches the form i1p(k), and no witness was found, we know
that qi 6∈ A, and proceed with the simulation accordingly. We conclude that
∆2 ⊆ D. 2

It may be interesting to note that we may remove the write-once work tape
from the above machine model if we add an additional tape-head to the
counter. We now sketch the technique for simulating the oracle in this case.

With two heads, and using only the finite control, it is possible to verify if
the counter (or part of the counter) holds a valid computation history of a
fixed non-deterministic machine M over input qi (given on the safe-storage
tape). This suffices for deciding if query qi is in a Σ1 set A: let M be a
non-deterministic machine deciding A. Using the clock, we go through every

18

possible computation ofM on input qi, and find if any of these computations
is accepting. Note that the total length of the computation history is bounded
by a fixed polynomial and can, therefore, be precomputed on the safe-storage
tape, in order to stop the search when a witness does not exist. Another way
of doing that is to normalise M so that the last branch of its computation
tree can be easily recognised.

Acknowledgements

Isabel Oitavem thanks FCT-UNL and CMAF-UL. Her research was supported
by FEDER and FCT (project POCI/MAT/61720/2004 and Plurianual 2007).
Bruno Loff thanks IST-UTL and CMAF-UL, where part of this work was
carried out. The authors also thank the referee for the thoughtful reading and
comments.

References

Stephen Bellantoni. Predicative recursion and the polytime hierarchy. In
FEASMATH: Feasible Mathematics: A Mathematical Sciences Institute
Workshop. Birkhauser, 1995.

Stephen Bellantoni and Stephen Cook. A new recursion-theoretic character-
ization of the polytime functions. Computational Complexity, 2(2):97–110,
1992.

Jin-Yi Cai and Merrick Furst. PSPACE survives constant-width bottle-
necks. International Journal of Foundations of Computer Science, 2(1):
67–76, 1991.

Peter Clote. Handbook of Computability Theory, volume 140 of Studies in Logic
and the Foundations of Mathematics, chapter 17 – Computation Models and
Function Algebras, pages 589–681. Elsevier, 1999.

M. D. Gladstone. Simplifications of the recursion scheme. Journal of Symbolic
Logic, 36(4):653–665, 1971.

Sandy Irani, Moni Naor, and Ronitt Rubinfeld. On the time and space com-
plexity of computation using write-once memory or is pen really much worse
than pencil? Mathematical Systems Theory, 25:141–159, 1992.

Isabel Oitavem. New recursive characterizations of the elementary functions
and the functions computable in polynomial space. Revista Matematica de
la Universidad Complutense de Madrid, 10(1):109–125, 1997.

Christos Papadimitriou. Computational Complexity. Addison-Wesley, Read-
ing, Massachusetts, 1994.

Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer
Science, 3(1):1–22, 1976.

C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical
Computer Science, 3(1):23–33, 1976.

19

