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In this paper we study the complexity of the problems: given a loop, described by linear constraints over
a finite set of variables, is there a linear or lexicographical-linear ranking function for this loop? While
existence of such functions implies termination, these problems are not equivalent to termination. When
the variables range over the rationals (or reals), it is known that both problems are PTIME decidable.
However, when they range over the integers, whether for single-path or multipath loops, the complexity
has not yet been determined. We show that both problems are coNP-complete. However, we point out some
special cases of importance of PTIME complexity. We also present complete algorithms for synthesizing
linear and lexicographical-linear ranking functions, both for the general case and the special PTIME cases.
Moreover, in the rational setting, our algorithm for synthesizing lexicographical-linear ranking functions
extends existing ones, because our definition for such functions is more general, yet it has polynomial-time
complexity.
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1. INTRODUCTION
Termination analysis has received considerable attention and nowadays several pow-
erful tools for the automatic termination analysis of different programming languages
and computational models exist [Giesl et al. 2004; Cook et al. 2006; Albert et al. 2007;
Spoto et al. 2010; Kroening et al. 2010; Harris et al. 2011]. Much of the recent devel-
opment in termination analysis has benefited from techniques that deal with one loop
at a time, where a loop is specified by a loop guard and a (non-iterative) loop body.

Very often, these loops are abstracted so that the state of the program during the
loop is represented by a finite set of integer variables, the loop guard is a conjunction
of linear inequalities, and the body modifies the variables in an affine linear way, as in
the following example:

while (x2 − x1 ≤ 0, x1 + x2 ≥ 1) do x′2 = x2 − 2x1 + 1, x′1 = x1 (1)

where primed variables represent the values at the completion of an iteration. When
the variables are modified in the loop body so that they are not affine linear func-
tions of the old ones, the effect is sometimes captured (or approximated) using linear
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constraints. For example, the C loop “while (4*x1>=x2 && x2>=1) x1=(2*x1+1)/5;”,
which involves integer division, can be represented by linear constraints as follows
(since 2*x1+1 is always positive)

while (4x1 ≥ x2, x2 ≥ 1) do 5x′1 ≤ 2x1 + 1, 5x′1 ≥ 2x1 − 3, x′2 = x2 (2)

Linear constraints might also be used to model changes to data structures, the vari-
ables representing a size abstraction such as length of lists, depth of trees, etc. [Lin-
denstrauss and Sagiv 1997; Lee et al. 2001; Bruynooghe et al. 2007; Spoto et al. 2010;
Magill et al. 2010]. For a precise definition of the loop representations we consider, see
Section 2; they also include multipath loops where alternative paths in the loop body
are represented.

A standard technique to prove the termination of a loop is to find a ranking function.
Such a function maps a program state (a valuation of the variables) into an element
of some well-founded ordered set, such that the value descends (in the appropriate
order) whenever the loop completes an iteration. Since descent in a well-founded set
cannot be infinite, this proves that the loop must terminate. This definition of “ranking
function” is very general; in practice, researchers have often limited themselves to a
convenient and tractable form of ranking function, so that an algorithm to find the
function—if there is one—might be found.

A frequently used class of ranking functions is based on affine linear functions. In
this case, we seek a function ρ(x1, . . . , xn) = a1x1 + · · · + anxn + a0, with the rationals
as a co-domain, such that

(i) ρ(x̄) ≥ 0 for any valuation x̄ that satisfies the loop guard; and
(ii) ρ(x̄) − ρ(x̄′) ≥ 1 for any transition (single execution of the loop body) that starts

in x̄ and leads to x̄′.

This automatically induces the piecewise-linear ranking function: f(x̄) = ρ(x̄) + 1 if
x̄ satisfies the loop guard and 0 otherwise, with the non-negative rationals as a co-
domain but ordered w.r.t. a � b if and only if a ≥ b + 1 (which is well-founded). For
simplicity, we call ρ itself a linear ranking function instead of referring to f .

An algorithm to find a linear ranking function using linear programming (LP ) was
found by multiple researchers in different places and times and in some alternative
versions [Feautrier 1992a; Sohn and Gelder 1991; Colón and Sipma 2001; Podelski and
Rybalchenko 2004a; Mesnard and Serebrenik 2008; Alias et al. 2010]. Since LP has a
polynomial-time complexity, most of these methods yield polynomial-time algorithms.
Generally speaking, they are based on the fact that LP can precisely decide whether
a given inequality is implied by a set of other inequalities, and can even be used to
generate any implied inequality. After all, conditions (i) and (ii) above are inequalities
that should be implied by the constraints that define the loop guard and body. This
approach can, in a certain sense, be sound and complete.

Soundness means that it produces a correct linear ranking function, if it succeeds;
completeness means that if a linear ranking function exists, it will succeed. In other
words, there are no false negatives. A completeness claim appears in some of the ref-
erences, and we found it cited several times. In our opinion, it has created a false
impression that the Linear Ranking problem for linear-constraint loops with integer
variables was completely solved (and happily classified as polynomial time).

The fly in the ointment is the fact that these solutions are only complete when the
variables range over the rationals, which means that the linear ranking function has
to fulfill its requirements for any rational valuation of the variables that satisfies the
loop guard. But this may lead to a false negative if the variables are, in fact, integers.
The reader may turn to the two loops above and note that both do not terminate over
the rationals at all (for the first, consider x1 = x2 = 1

2 ; for the second, x1 = 1
4 and
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x2 = 1). But they have linear ranking functions valid for all integer valuations, which
we derive in Section 3.4.

This observation has led us to investigate the Linear Ranking problem for single-
path and multipath linear constraint loops. We present several fundamental new re-
sults on this problem. We have confirmed that this problem is indeed harder in the
integer setting, proving it to be coNP-complete (as a decision problem), even for loops
that only manipulate integers in a finite range. On a positive note, this shows that
there is a complete solution, even if exponential-time. We give such a solution both to
the decision problem and to the synthesis problem. The synthesis algorithm is based
on first computing the integer hull of the transition polyhedron defined by the loop
constraints, which may require exponential time, and then applying an LP -based so-
lution (one which is complete over the rationals). The crux of the coNP-completeness
proof is that we rely on the generator representation of the (integer-hull of) the transi-
tion polyhedron. We provide sufficient and necessary conditions for the existence of a
linear ranking function that use the vertices and rays of this representation. This also
leads to an alternative synthesis algorithm.

Another positive aspect of our results, for the practically-minded reader, is that some
special cases of importance do have a PTIME solution, because they reduce (with no
effort, or with a polynomial-time computation) to the rational case. We present several
such cases, which include, among others, loops in which the body is a sequence of
linear affine updates with integer coefficients, as in loop (1) above, and the condition is
defined by either an extended form of difference constraints, a restricted form of Two
Variables Per Inequality constraints, or a cone (constraints where the free constant is
zero). Some cases in which the body involves linear constraints are also presented.

But linear ranking functions do not suffice for all loops, and, in particular for multi-
path loops, lexicographic-linear ranking functions are a natural extension. Such func-
tions are a tuple of affine functions, such that in every iteration of the loop, the value
of the tuple decreases lexicographically. Such a function will work, for example, for the
following multipath loop

loop : {x1 ≥ 0, x2 ≥ 0, x′1 = x1 − 1} ∨ {x1 ≥ 0, x2 ≥ 0, x′2 = x2 − 1, x′1 = x1} (3)

where in the first path x1 decreases towards zero and x2 is changed unpredictably,
since there is no constraint on x′2; this could arise, for instance, from x2 being set to
the result of an input from the environment, or a function call for which we have no
invariants. In the second path x2 decreases towards zero and x1 is unchanged. Clearly,
〈x1, x2〉 always decreases lexicographically, but there can be no single linear ranking
function for this loop.

In Section 5 we analyze the complexity of the decision problem: is there a
lexicographic-linear ranking function for a given loop? We also give a complete syn-
thesis algorithm. Our point of departure (corresponding to the case of linear ranking
functions) is the known polynomial-time algorithm of Alias et al. [2010], based on LP ,
that is claimed to be complete—and as explained above, is only complete when one
extends the domain of the variables to the rationals. We show that the correspond-
ing decision problem is, like the case of linear ranking function, coNP-complete when
the variables are restricted to hold integers. We also give a novel complete synthesis
algorithm. The algorithm is of exponential-time complexity, but becomes polynomial-
time in special cases corresponding to those identified in the context of linear ranking
functions.

We also consider the application of the algorithm to the setting of rational data;
in this setting it has polynomial-time complexity and extends the one of Alias et al.
[2010], because our class of ranking functions is more general. The algorithm produces
a function that descends lexicographically in the rationals; for example, if it produces
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〈x1, x2〉, it ensures that in every possible transition either x1 > x′1 and x1 ≥ 0 or x1 = x′1
and x2 > x′2 and x2 ≥ 0. If one is only interested in integer data, such a function proves
termination, and this relaxation to the rationals is therefore sound. Over the rationals,
however, this lexicographic order is not well-founded — simply because the order (>)
on Q+ is not (consider the sequence x1 = 1

2 ,
1
3 ,

1
4 , . . . ). Interestingly, we prove that a

function that descends in the lexicographic extension of the order (>) can always be
turned into one that descends in the lexicographic extension of the order a � b (defined
as b ≥ a+ 1), and therefore implies termination.

We prove some properties of our synthesis algorithm, for example that the dimension
(the length of the tuple) of the functions it produces is always the smallest possible.

Our results should be of interest to all users of ranking functions, and in fact their
use goes beyond termination proofs. For example, they have been used to provide
an upper bound on the number of iterations of a loop in program complexity analy-
sis [Albert et al. 2011; Alias et al. 2010] and to automatically parallelize computa-
tions [Feautrier 1992a; Darte 2010]. We remark that in termination analysis, the dis-
tinction between integers and rationals has already been considered, both regarding
ranking-function generation [Feautrier 1992a; Bradley et al. 2005c; Cook et al. 2010]
and the very decidability of the termination problem [Ben-Amram et al. 2012; Tiwari
2004; Braverman 2006]. All these works left the integer case open. Interestingly, our
results provide an insight on how to make the solution proposed by Bradley et al.
[2005c], for synthesizing linear ranking functions, complete (see Section 7).

Our tool iRANKFINDER implements the algorithms mentioned above (and more) and
can be tried out online (see Section 6).

This paper is organized as follows. Section 2 gives definitions and background in-
formation regarding linear-constraint loops, linear and lexicographic-linear ranking
functions, and the mathematical notions involved. Section 3 proves that the decision
problem “is there a linear ranking function for an integer loop”, is coNP-complete, and
also presents an exponential-time ranking-function synthesis algorithm. Section 4 dis-
cusses PTIME-solvable cases. Section 5 studies the complexity of the decision problem
“is there a lexicographic-linear ranking function for a given loop”, both for integer and
rational data, and proves that it is coNP-complete and PTIME respectively. It also de-
velops corresponding complete synthesis algorithms. Section 6 describes a prototype
implementation. Section 7 surveys related previous work. Section 8 concludes. A con-
ference version of this paper, including the results on linear ranking functions (but
not lexicographic-linear ranking functions), has been presented at POPL 2013 [Ben-
Amram and Genaim 2013].

2. PRELIMINARIES
In this section we recall some results on (integer) polyhedra on which we will rely
along the paper, define the kind of loops we are interested in, and define the linear and
lexicographic-linear ranking function problems for such loops.

2.1. Integer Polyhedra
We recall some useful definitions and properties, all following Schrijver [1986].

Polyhedra. A rational convex polyhedron P ⊆ Qn (polyhedron for short) is the set
of solutions of a set of inequalities Ax ≤ b, namely P = {x ∈ Qn | Ax ≤ b}, where
A ∈ Qm×n is a rational matrix of n columns andm rows, x ∈ Qn and b ∈ Qm are column
vectors of n and m rational values respectively. We say that P is specified by Ax ≤ b.
We use calligraphic letters, such as P and Q to denote polyhedra. The set of recession
directions of a polyhedron P specified by Ax ≤ b is the set RP = {y ∈ Qn | Ay ≤ 0}.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



A:5

x1

x2

x 2
−
x 1
≤
3

−
x
1 −

x
2 ≤
−
4

1
2
x1
−x2
≤1

7
2

1
2

2
3

10
3

P

x1

x2

x 2
−
x 1
≤
3

−
x
1 −

x
2 ≤
−
4

1
2
x1
−x2
≤1

x2≥1

x
1
≥

1

1

3

3

1

4

1

1

4

PI

Fig. 1. A polyhedron P and its integet-hull PI .

Example 2.1. Consider the polyhedron P of Figure 1 (on the left). The points de-
fined by the gray area, and the black borders, are solutions to the system of linear
inequalities x2 − x1 ≤ 3 ∧ −x1 − x2 ≤ −4 ∧ 1

2x1 − x2 ≤ 1.

Integer Polyhedra. For a given polyhedron P ⊆ Qn we let I(P) be P ∩ Zn, i.e., the
set of integer points of P. The integer hull of P, commonly denoted by PI , is defined
as the convex hull of I(P), i.e., every rational point of PI is a convex combination of
integer points. This property is fundamental to our results. It is known that PI is also
a polyhedron. An integer polyhedron is a polyhedron P such that P = PI . We also say
that P is integral.

Example 2.2. The integer hull PI of polyhedron P of Figure 1 (on the left) is given
in the same figure (on the right). It is defined by the dotted area and the black border,
and is obtained by adding the inequalities x1 ≥ 1 and x2 ≥ 1 to P. The two gray
triangles next to the edges of PI are subsets of P that were eliminated when computing
PI .

Generator representation. Polyhedra also have a generator representation in terms of
vertices and rays1, written as

P = convhull{x1, . . . ,xm}+ cone{y1, . . . ,yt} .

This means that x ∈ P if and only if x =
∑m
i=1 ai · xi +

∑t
j=1 bj · yj for some rationals

ai, bj ≥ 0, where
∑m
i=1 ai = 1. Note that y1, . . . ,yt are the recession directions of P,

i.e., y ∈ RP if and only if y =
∑t
j=1 bj · yj for some rationals bj ≥ 0. If P is integral,

then there is a generator representation in which all xi and yj are integer. An empty
polyhedron is represented by an empty set of vertices and rays.

Example 2.3. The generator representations of P and PI of Figure 1 are

P = convhull{( 1
2 ,

7
2 ), ( 10

3 ,
2
3 )}+ cone{(1, 1), (7, 3)}

PI = convhull{(1, 3), (1, 4), (3, 1), (4, 1)}+ cone{(1, 1), (7, 3)}
The points in convhull are vertices, they correspond to the points marked with • in
Figure 1. The rays are the vectors (1, 1), (7, 3); they describe a direction, rather than
a specific point, and are therefore represented in the figure as arrows. Note that the
vertices of PI are integer points, while those of P are not. The point (3, 2), for example,

1Technically, the x1, . . . ,xn are only vertices if the polyhedron is pointed.
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is defined as 5
17 · (

1
2 ,

7
2 ) + 12

17 · (
10
3 ,

2
3 )}+ 1

2 · (1, 1) + 0 · (7, 3) in P, and as 0 · (1, 3) + 1
3 · (1, 4) +

0 · (3, 1) + 2
3 · (4, 1) + 0 · (1, 1) + 0 · (7, 3) in PI .

Faces. If c is a nonzero vector and a = max{c·x | x ∈ P}, thenH = {x ∈ Qn | c·x = a}
is called a supporting hyperplane for P. A non-empty subset F ⊆ P is called a face if
F = P or F is an intersection of P with a supporting hyperplane [Schrijver 1986,
p. 101]. In the latter case we say that F is a proper face of P. Alternatively, F is
face of P if and only if it can be obtained by turning some inequalities of Ax ≤ b to
equalities [Schrijver 1986, Sec. 16.3, p. 231]. It is known that a polyhedron P is integral
if and only if every face of P includes an integer point [Schrijver 1986, Sec. 16.3, p. 231].
This implies that the faces of an integral polyhedron P are integral.

Example 2.4. Polyhedron P of Figure 1 has 5 proper faces, each corresponds to ei-
ther a black segment or a vertex (a point marked with •). For example, the segment
between ( 1

2 ,
7
2 ) and ( 10

3 ,
2
3 ) is a proper face, and it can be obtained by turning the in-

equality −x1−x2 ≤ −4 to −x1−x2 = −4 in P. Similarly, polyhedron PI of Figure 1 has
9 proper faces, in this case each includes an integer point.

Dimension of polyhedra. Let A x ≤ b be the set of all implicit equalities in Ax ≤ b
(ai · x ≤ bi is an implicit inequality if ai · x = bi holds for any x ∈ P). The affine hull
of P is defined as aff.hull(P) = {x ∈ Qn | A x = b }. The dimension of the affine hull
is the dimension of the linear subspace {x | A x = 0} (i.e, the cardinality of the bases).
Alternatively, it is equal to n minus the rank of the matrix A . The dimension of a
polyhedron P ⊆ Qn, denoted by dim(P), is equal to the dimension of its affine hull. The
dimension of the empty polyhedron, by convention, is −1. The dimension of a proper
face of P is at least 1 less than that of P. Note that when dim(P) = 0 then P is a single
point.

Example 2.5. Both P and PI of Figure 1 have dimension 2. Their proper faces that
are defined by segments (resp. vertices) have dimension 1 (resp. 0).

Relative interior. The relative interior of P is defined as ri(P) = {x | ∃ε > 0 . B(x, ε)∩
aff.hull(P) ⊆ P} where B(x, ε) is a ball of radius ε centered on x. Intuitively, it is the
set of all points which are not on the “edge” of P. Note that x ∈ ri(P) if and only if
x ∈ P and x does not belong to any proper face of P. When dim(P) = 0, the single point
of P is in the relative interior (since P does not have any proper face).

Example 2.6. Consider the polyhedra of Figure 1. The relative interior of P is de-
fined by the gray area, and that of PI by the dotted area, i.e., we exclude the points on
the black segments of each polyhedron (which are proper faces as explained in Exam-
ple 2.6).

Size of polyhedra. Complexity of algorithms on polyhedra is measured in this paper
by running time, on a conventional computational model (polynomially equivalent to
a Turing machine), as a function of the bit-size of the input. Following Schrijver [1986,
Sec. 2.1], we define the bit-size of an integer x as ‖x‖ = 1 + dlog(|x| + 1)e; the bit-size
of an n-dimensional vector a as ‖a‖ = n +

∑n
i=1 ‖ai‖; and the bit-size of an inequality

a ·x ≤ c as 1+‖c‖+‖a‖. For a polyhedron P ⊆ Qn defined by Ax ≤ b, we let ‖P‖b be the
bit-size of Ax ≤ b, which we can take as the sum of the sizes of the inequalities. The
facet size, denoted by ‖P‖f , is the smallest number φ ≥ n such that P may be described
by some Ax ≤ b where each inequality in Ax ≤ b fits in φ bits. Clearly, ‖P‖f ≤ ‖P‖b.
The vertex size, denoted by ‖P‖v, is the smallest number ψ ≥ n such that P has a
generator representation in which each of xi and yj fits in ψ bits (the size of a vector
is calculated as above). For integer polyhedra, we restrict the generators to be integer.
The following theorems state some relations between the different bit-sizes defined
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above, they are later used to polynomially bound the bit-size of some set of integer
points of PI . They are from Schrijver [1986] (Th. 10.2, p. 121, and Cor. 17.1a,17.1b,
p. 238), who cites Karp and Papadimitriou [1980].

THEOREM 2.7. Let P be a rational polyhedron in Qn; then ‖P‖v ≤ 4n2‖P‖f and
‖P‖f ≤ 4n2‖P‖v.

THEOREM 2.8. Let P be a rational polyhedron in Qn; then ‖PI‖v ≤ 6n3‖P‖f and
‖PI‖f ≤ 24n5‖P‖f .

2.2. Multipath Linear-Constraint Loops
A single-path linear-constraint loop (SLC for short) over n variables x1, . . . , xn has the
form

while (Bx ≤ b) do A

(
x
x′

)
≤ c (4)

where x = (x1, . . . , xn)T and x′ = (x′1, . . . , x
′
n)T are column vectors, and for some p, q > 0,

B ∈ Qp×n, A ∈ Qq×2n, b ∈ Qp, c ∈ Qq. The constraint Bx ≤ b is called the loop
condition (a.k.a. the loop guard) and the other constraint is called the update. The
update is called deterministic if, for a given x (satisfying the loop condition) there is at
most one x′ satisfying the update constraint. The update is called affine linear if it can
be rewritten as

x′ = A′x + c′ (5)
for a matrix A′ and vector c′ of appropriate dimensions. We say that the loop is a
rational loop if x and x′ range over Qn, and that it is an integer loop if they range over
Zn.

We say that there is a transition from a state x ∈ Qn to a state x′ ∈ Qn, if x satisfies
the condition and x and x′ satisfy the update. A transition can be seen as a point(
x
x′
)
∈ Q2n, where its first n components correspond to x and its last n components

to x′. For ease of notation, we denote
(
x
x′
)

by x′′. The set of all transitions x′′ ∈ Q2n

will be denoted, as a rule, by Q. The transition polyhedron Q is specified by the set of
inequalities A′′x′′ ≤ c′′ where

A′′ =

(
B 0
A

)
c′′ =

(
b
c

)
Note that we may assume that Q does not include the origin, for if it includes it, the
loop is clearly non-terminating (this condition is easy to check). Hence, Q is not a
cone (i.e., m ≥ 1 in the generator representation). The polyhedron defined by the loop
condition Bx ≤ b will be denoted by C and referred to as the condition polyhedron.

A multipath linear-constraint loop (MLC for short) differs by having alternative loop
conditions and updates, which are, in principle, chosen non-deterministically (though
the constraints may enforce a deterministic choice):

loop

k∨
i=1

[
Bix ≤ bi ∧ Ai

(
x
x′

)
≤ ci

]
(6)

This means that the i-th update can be applied if the i-th condition is satisfied. Fol-
lowing the notation of SLC loops, the transitions of an MLC loop are specified by the
transition polyhedra Q1, . . . ,Qk, where each Qi is specified by A′′i x′′ ≤ c′′i . The polyhe-
dron defined by the condition Bix ≤ bi is denoted by Ci.

For simplifying the presentation, often we write loops with explicit equalities and
inequalities instead of the matrix representation. We also might refer to loops by their
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corresponding transition polyhedra, or the sets of inequalities that define these poly-
hedra.

2.3. Linear Ranking Functions

An affine linear function ρ : Qn → Q is of the form ρ(x) = ~λ · x + λ0 where ~λ ∈ Qn is
a row vector and λ0 ∈ Q. For ease of notation we sometimes refer to an affine linear
function using the row vector (λ0,~λ) ∈ Qn+1. For a given function ρ, we define the
function ∆ρ : Q2n 7→ Q as ∆ρ(x′′) = ρ(x)− ρ(x′). Next we define when an affine linear
function is a linear ranking function (LRF for short) for a given rational or integer
MLC loop.

Definition 2.9. Given a set T ⊆ Q2n, representing transitions, we say that ρ is a
LRF for T if the following hold for every x′′ ∈ T :

ρ(x) ≥ 0 , (7)
∆ρ(x′′) ≥ 1 . (8)

We say that ρ is a LRF for a rational loop, specified by Q1, . . . ,Qk, when it is a LRF

for all of Q1, . . . ,Qk (equivalently, it is a LRF for
⋃k
i=1Qi). We say that ρ is a LRF

for an integer loop, specified by Q1, . . . ,Qk polyhedra, when it is a LRF for all of
I(Q1), . . ., I(Qk).

Clearly, the existence of a LRF implies termination of the loop. Note that in (8) we
require ρ to decrease at least by 1, whereas in the literature [Podelski and Rybalchenko
2004a] this 1 is sometimes replaced by δ > 0. It is easy to verify that these definitions
are equivalent as far as the existence of a LRF is concerned.

Definition 2.10. The decision problem Existence of a LRF is defined by
Instance: an MLC loop.
Question: does there exist a LRF for this loop?

The decision problem is denoted by LINRF(Q) and LINRF(Z) for rational and integer
loops respectively.

It is known that LINRF(Q) is PTIME-decidable [Podelski and Rybalchenko 2004a;
Mesnard and Serebrenik 2008]. In this paper, we focus on LINRF(Z).

2.4. Lexicographic-Linear Ranking Functions
A d-dimensional affine function τ : Qn → Qd is a function of the form τ = 〈ρ1, . . . , ρd〉,
where each component ρi : Qn → Q is an affine function. The number d is informally
called the dimension of the function (technically, it is the dimension of the co-domain).
Next we define when a d-dimensional affine function is a lexicographic-linear ranking
function (LLRF for short) for a given rational or integer MLC loop.

Definition 2.11. Let T ⊆ Q2n be a given set, representing transitions, and τ =
〈ρ1, . . . , ρd〉 a d-dimensional affine function. We say that τ is a LLRF for T if and only
if for every x′′ ∈ T there exists i ≤ d such that the following hold

∀j < i . ∆ρj(x
′′) ≥ 0 , (9)

∀j ≤ i . ρj(x) ≥ 0 , (10)
∆ρi(x

′′) ≥ 1 . (11)

We say that x′′ is ranked by ρi.
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As for LRFs, we say that τ is a LLRF for a rational loopQ1, . . . ,Qk when it is a LLRF

for
⋃k
i=1Qi, and that it is a LLRF for the corresponding integer loop if it is a LLRF for⋃k

i=1 I(Qi).
Note that in (11) we require ρi to decrease at least by 1. As for the case of LRFs,

this 1 can be replaced by any δi > 0. It is easy to verify that these definitions are
equivalent as far as the existence of a LLRF is concerned. The existence of a LLRF
implies termination of the loop. This may be justified by converting the function into
one that decreases in a well-founded set; such a function is

τ̂(x) = 〈max(0, ρ1(x)), . . . ,max(0, ρd(x))〉,

whose co-domain is 〈Qd+,�lex〉, where �lex is the lexicographic extension of the well-
founded order: a � b iff a+ 1 ≤ b.

Our class of LLRFs differs somewhat from other classes of “lexicographic-linear
ranking functions” that appeared in the literature [Bradley et al. 2005a; Alias et al.
2010]. Specifically, the definition in Alias et al. [2010] is more restrictive since it re-
quires (10) to hold for all 1 ≤ j ≤ d. The following example illustrates the difference.

Example 2.12. Consider the SLC loop

while(x1 ≥ 0, x2 ≥ 0, x3 ≥ −x1) do x′2 = x2 − x1, x′3 = x3 + x1 − 2 . (12)

It has a LLRF τ = 〈x2, x3〉 as in Definition 2.11 (over both rationals and integers),
however, it does not have a LLRF according to Alias et al. [2010]. Indeed, when x2
decreases x3 can be negative (e.g., for x1 = 1, x2 = 2 and x3 = −1).

Another difference from Alias et al. [2010] lies in the fact that they require the non-
negativity conditions (10) to be implied by the loop guard. That is, it is not possible
to use the constraints in the update part of the loop in proving this condition, when
according to our definition it is possible.

The definition of Bradley et al. [2005a] requires (10) to hold only for j = i, which
adds flexibility, as we show next.

Example 2.13. Consider the MLC loop

loop : {x1 ≥ 0, x′1 = x1 − 1} ∨ {x2 ≥ 0, x′2 = x2 − 1, x′1 ≤ x1} . (13)

It has a LLRF τ = 〈x1, x2〉 according to the definition of Bradley et al. [2005a], however,
it does not have one that satisfies Definition 2.11. Indeed, in transitions where x2
decreases x1 may be negative, but x1 must be the first component.

Another difference is that Bradley et al. [2005a] require a fixed association of ranking-
function components with the paths of the loop. So, for example, they cannot have a
2-dimensional LLRF for an SLC loop, as in Example 2.12.

Definition 2.14. The decision problem Existence of a LLRF is defined by
Instance: an MLC loop.
Question: does there exist a LLRF for this loop?

The decision problem is denoted by LEXLINRF(Q) and LEXLINRF(Z) for rational and
integer loops respectively.

3. LINRF(Z) IS coNP-COMPLETE
In this section we show that the LINRF(Z) problem is coNP-complete; it is coNP-hard
already for SLC loops that restrict the variables to a finite range. We also show that
LRFs can be synthesized in deterministic exponential time.
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This section is organized as follows: in Section 3.1 we show that LINRF(Z) is coNP-
hard; in Section 3.2 we show that it is in coNP for SLC loops, and in Section 3.3 for
MLC loops; finally, in Section 3.4, we describe an algorithm for synthesizing LRFs.

3.1. coNP-hardness
We prove coNP-hardness in a strong form. Recall that a number problem (a problem
whose instance is a matrix of integers) Prob is strongly hard for a complexity class, if
there are polynomial reductions from all problems in that class to Prob such that the
values of all numbers created by the reduction are polynomially bounded by the input
bit-size. Assuming NP6=P, strongly NP-hard (or coNP-hard) problems cannot even have
pseudo-polynomial algorithms [Garey and Johnson 1979].

THEOREM 3.1. The LINRF(Z) problem is strongly coNP-hard, even for SLC loops
with affine-linear updates.

PROOF. The problem of deciding whether a polyhedron given by Bx ≤ b contains no
integer point is a well-known coNP-hard problem (an easy reduction from SAT [Karp
1972]). We reduce this problem to LINRF(Z).

Given B ∈ Zm×n and b ∈ Zm, we construct the following integer SLC loop

while

(
B −I
0 −I

)(
x
z

)
≤
(
b
0

)
do

(
x′

z′

)
=

(
x
0

)
where x = (x1, . . . , xn)T, z = (z1, . . . , zm)T are integer variables, and I is an identity
matrix of size m×m.

Suppose Bx ≤ b has an integer solution x. Then, it is easy to see that the loop does
not terminate when starting from this x and z set to 0, since the guard is satisfied and
the update does not change the values. Thus, it does not have any ranking function,
let alone a LRF .

Next, suppose Bx ≤ b does not have an integer solution. Then, for any initial state
for which the loop guard is enabled it must hold that z1 + · · · + zm > 0, for otherwise
z1, . . . , zm must be 0 in which case the constraint Bx− Iz ≤ b has no integer solution.
Since the updated vector z′ is deterministically set to 0, the guard will not be enabled
in the next state, hence the loop terminates after one iteration. Clearly z1 + · · ·+ zm >
z′1 + · · ·+ z′m = 0, so we conclude that z1 + · · ·+ zm is a LRF .

Note that in the above reduction we rely on the hardness of whether a given poly-
hedron is empty. This problem is coNP-hard alrady for bounded polyhedra (due to
the reduction from SAT in which variables are bounded by 0 and 1). This means that
even for loops that only manipulate integers in a rather small range, the problem is
coNP-hard. The parameter “responsible” for the exponential behavior in this case is
the number of variables.

Note also that the loop constructed in the reduction either has a LRF , or fails to
terminate. Hence, one cannot hope to avoid the coNP-hardness by using another kind
of certificate instead of linear ranking functions, as long as the certificate is sufficiently
expressive to capture the termination argument for integer loops where variables are
limited to [0, 1], update is an affine linear function, and termination follows from the
fact that a sum of variables always descends.

3.2. Inclusion in coNP for SLC Loops
To prove that LINRF(Z) is in coNP, we show that the complement of LINRF(Z), the
problem of nonexistence of a LRF , is in NP, that is, has a polynomially-checkable wit-
ness. In what follows we assume as input an SLC loop with a transition polyhedron
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Q ⊆ Q2n. The input is given as the set of linear inequalities A′′x′′ ≤ c′′ that define Q.
The proof follows the following lines:

(1) We show that there is no LRF for I(Q) if and only if there is a witness that consists
of two sets of integer points X ⊆ I(Q) and Y ⊆ I(RQ), such that a certain set of
inequalities ΨWS (X,Y ) has no solution over the rationals; and

(2) We show that if there is a witness then there is one with bit-size polynomial in the
input bit-size.

To make sense of the following definitions, think of a vector (λ0,~λ) ∈ Qn+1 as a “candi-
date LRF ” that we may want to verify (or, in our case, to eliminate).

Definition 3.2. We say that x′′ ∈ I(Q) is a witness against (λ0,~λ) ∈ Qn+1 if it fails
to satisfy at least one of

~λ · x + λ0 ≥ 0 (14)
~λ · (x− x′) ≥ 1 (15)

The set of (λ0,~λ) witnessed against by x′′ is denoted by W (x′′).

Note that conditions (14,15) are obtained from (7,8) by writing ρ explicitly.

Definition 3.3. We say that y′′ ∈ I(RQ) is a homogeneous (component of a) witness
(h-witness) against (λ0,~λ) ∈ Qn+1 if it fails to satisfy at least one of

~λ · y ≥ 0 (16)
~λ · (y − y′) ≥ 0 (17)

The set of (λ0,~λ) h-witnessed against by y′′ is denoted by WH(y′′).

The meaning of the witness of Definition 3.2 is quite straightforward. Let us intu-
itively explain the meaning of an h-witness. Suppose that x′′ is a point in QI , and y′′

is a ray of QI . Then a LRF ρ has to satisfy (14) for any point of the form x′′ + ay′′

with integer a > 0 since it is a point in I(Q); letting a grow to infinity, we see that (14)
implies the homogeneous inequality (16). Similarly, (15) implies (17).

Definition 3.4. Given X ⊆ I(Q) and Y ⊆ I(RQ), define

WS (X,Y ) =
⋃

x′′∈X
W (x′′) ∪

⋃
y′′∈Y

WH(y′′) . (18)

LEMMA 3.5. Let X ⊆ I(Q), X 6= ∅, and Y ⊆ I(RQ). If WS (X,Y ) = Qn+1, then there
is no LRF for I(Q).

PROOF. Let WS (X,Y ) = Qn+1. For any (λ0,~λ) ∈ Qn+1, we prove that ρ(x) = ~λ ·x+λ0
is not a LRF . If (λ0,~λ) ∈W (x′′) for some x′′ ∈ X, then the conclusion is clear since one
of the conditions(14) and (15) does not hold. Otherwise, suppose that (λ0,~λ) ∈ WH(y′′)
for y′′ ∈ Y . Thus, y′′ fails to satisfy one of conditions (16,17). Next we show that, in
such case, there must exist z′′ ∈ I(Q) that fails either (14) or (15). In this part of the
proof, we rely on the fact that X 6= ∅.

Case 1: Suppose (16) is not satisfied. That is, ~λ · y < 0.
Choose x′′ ∈ X, and note that ρ(x) ≥ 0, otherwise (λ0,~λ) ∈ W (x′′) which we have

assumed not true. Note that for any integer a ≥ 0, the integer point z′′ = x′′ + a · y′′ is
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a transition in I(Q), and z′′ =
( x +a·y
x′+a·y′

)
. We choose a as an integer sufficiently large so

that a · (~λ · y) ≤ −(1 + ρ(x)). Now,

ρ(z) = ~λ · (x + a · y) + λ0

= ρ(x) + a · (~λ · y) ≤ ρ(x)− (1 + ρ(x)) = −1

So ρ fails (14) on z′′ ∈ I(Q), and thus cannot be a LRF .

Case 2: Suppose (17) is not satisfied. That is, ~λ · (y − y′) < 0.
Choose x′′ ∈ X, and note that ρ(x) − ρ(x′) ≥ 1, otherwise (λ0,~λ) ∈ W (x′′) which we

have assumed not true. Define z′′ as above, but now choosing a sufficiently large to
make a · (~λ · (y − y′)) ≤ −(1 + ρ(x)− ρ(x′)). Now,

ρ(z)− ρ(z′) = ~λ · ((x + a · y)− (x′ + a · y′))

= ρ(x)− ρ(x′) + a · (~λ · (y − y′))

≤ ρ(x)− ρ(x′)− (1 + ρ(x)− ρ(x′)) = −1

So ρ fails (15) on z′′ ∈ I(Q), and thus cannot be a LRF .

Note that the condition WS (X,Y ) = Qn+1 is equivalent to saying that the conjunc-
tion of inequalities (14,15), for all x′′ ∈ X, and inequalities (16,17), for all y′′ ∈ Y ,
has no (rational) solution. We denote this set of inequalities by ΨWS (X,Y ). Note that
the variables in ΨWS (X,Y ) are λ0, . . . , λn, which range over Q, and thus, the test that
it has no solution can be done in polynomial time since it is an LP problem over the
rationals.

Example 3.6. Consider the following integer SLC loop:

while (x1 ≥ 0) do x′1 = x1 + x2, x
′
2 = x2 − 1

Let x′′1 = (0, 2, 2, 1)T ∈ I(Q) and y′′1 = (1,−2,−1,−2)T ∈ I(RQ). Then, ΨWS ({x′′1},{y′′1})
is a conjunction of the inequalities

{2λ2 + λ0 ≥ 0, − 2λ1 + λ2 ≥ 1, λ1 − 2λ2 ≥ 0, 2λ1 ≥ 0} (19)

The first two inequalities correspond to applying (14,15) to x′′1 , and the other ones
to applying (16,17) to y′′1 . It is easy to verify that (19) is not satisfiable, thus,
WS ({x′′1},{y′′1}) = Q3 and the loop does not have a LRF . This is a classical loop for
which there is no LRF .

Lemma 3.5 provides a sufficient condition for the nonexistence of LRF , the next
lemma shows that this condition is also necessary. In particular, it shows that if there
is no LRF for I(Q), then the vertices and rays of QI serve as X and Y of Lemma 3.5
respectively.

LEMMA 3.7. Let the integer hull of the transition polyhedron Q be QI =
convhull{x′′1 , . . . ,x′′m} + cone{y′′1 , . . . ,y′′t }. If there is no LRF for I(Q), then
WS ({x′′1 , . . . ,x′′m},{y′′1 , . . . ,y′′t }) = Qn+1.

PROOF. We prove the contra-positive. Suppose that

WS ({x′′1 , . . . ,x′′m},{y′′1 , . . . ,y′′t }) 6= Qn+1 .

Then, there is (λ0,~λ) ∈ Qn+1 that fulfills (14,15) for all x′′i and (16,17) for all y′′j . We
claim that ρ(x) = ~λ · x + λ0 is a LRF for I(Q).
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To see this, let x′′ be an arbitrary point of I(Q). Then x′′ =
∑m
i=1 ai ·x′′i +

∑t
j=1 bj ·y′′j

for some ai, bj ≥ 0 where
∑m
i=1 ai = 1. Now, we show that x′′ and ρ satisfy (14,15) which

means that ρ is a LRF for I(Q):

~λ · x + λ0 = λ0 +

m∑
i=1

ai · (~λ · xi) +

t∑
j=1

bj · (~λ · yj)

=

m∑
i=1

ai · (~λ · xi + λ0) +

t∑
j=1

bj · (~λ · yj)

≥ 0 + 0 = 0

=

m∑
i=1

ai · (~λ · (xi − x′i)) +

t∑
j=1

bj · (~λ · (yj − y′j))

≥ 1 + 0 = 1

Note that the solutions of ΨWS ({x′′1 , . . . ,x′′m},{y′′1 , . . . ,y′′t }) in Lemma 3.7 actually
define the set of all LRFs for I(Q). We will address this point later in Section 3.4, for
synthesizing LRFs.

Example 3.8. Consider again the loop of Example 3.6, and recall that it does not
have a LRF . The generator representation of QI is

QI = convhull{x′′1}+ cone{y′′1 ,y′′2 ,y′′3}
where x′′1 = (0, 1, 1, 0)T, y′′1 = (0,−1,−1,−1)T, y′′2 = (0, 1, 1, 1)T and y′′3 = (1,−1, 0,−1)T.
Then, ΨWS ({x′′1},{y′′1 ,y′′2 ,y′′3}) is a conjunction of the following inequalities{

λ2 + λ0 ≥ 0, −λ2 ≥ 0, λ2 ≥ 0, λ1 − λ2 ≥ 0,
−λ1 + λ2 ≥ 1, λ1 ≥ 0, −λ1 ≥ 0, λ1 ≥ 0

}
(20)

The inequalities in the leftmost column correspond to applying (14,15) to x′′1 , and those
in the other columns to applying (16,17) to y′′1 , y′′2 , and y′′3 respectively. It is easy to
verify that (20) is not satisfiable, and thus, WS ({x′′1},{y′′1 ,y′′2 ,y′′3}) = Q3.

Lemmas 3.5 and 3.7 provide a necessary and sufficient condition for the nonexistence
of a LRF .

COROLLARY 3.9. There is no LRF for I(Q) if and only if there are two finite sets
X ⊆ I(Q), X 6= ∅, and Y ⊆ I(RP), such that WS (X,Y ) = Qn+1.

The next lemma concerns the bit-size of the witness.

LEMMA 3.10. If there exists a witness for the nonexistence of a LRF for I(Q), there
exists one with X ⊆ I(Q) and Y ⊆ I(RQ) such that |X|+ |Y | ≤ n+ 2; and its bit-size is
polynomially bounded in the bit-size of the input.

PROOF. Recall that by Lemma 3.7, if I(Q) has no LRF , then

WS ({x′′1 , . . . ,x′′m},{y′′1 , . . . ,y′′t }) = Qn+1

or, equivalently, ΨWS ({x′′1 , . . . ,x′′m},{y′′1 , . . . ,y′′t }) has no solution. A corollary of Farkas’
Lemma [Schrijver 1986, p. 94] states that if a finite set of inequalities over Qd, for some
d > 0, has no solution, there is a subset of at most d + 1 inequalities that has no so-
lution. Since the set of inequalities ΨWS ({x′′1 , . . . ,x′′m},{y′′1 , . . . ,y′′t }) is over Qn+1, there
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is a subset of at most n + 2 inequalities that has no solution. This subset involves at
most n+2 integer points out of {x′′1 , . . . ,x′′m} and {y′′1 , . . . ,y′′t }, because every inequality
in ΨWS ({x′′1 , . . . ,x′′m},{y′′1 , . . . ,y′′t }) is defined by either one x′′i or y′′i (see (14–17)). Let
these points be X and Y , then |X| + |Y | ≤ n + 2 and ΨWS (X,Y ) has no solution, i.e.,
WS (X,Y ) = Qn+1. Moreover it must be that case that X 6= ∅, since all constraints of
the type (16,17) are satisfied by (λ0,~λ) = 0T.

Now we show that X and Y may be chosen to have bit-size polynomial in the size
of the input. Recall that the input is the set of inequalities A′′x′′ ≤ c′′ that define Q,
and its bit-size is ‖Q‖b. Recall that the points of X and Y in Lemma 3.7 come from
the generator representation, and that there is a generator representation in which
each vertex/ray can fit in ‖QI‖v bits. Thus, the bit-size of X and Y may be bounded by
(n+ 2) · ‖QI‖v. By Theorem 2.8, since the dimension of Q is 2n,

(n+ 2) · ‖QI‖v ≤ (n+ 2) · (6 · (2n)3 · ‖Q‖f ) ≤ (48n4 + 96n3) · ‖Q‖b
which is polynomial in the bit-size of the input.

Example 3.11. Consider ΨWS ({x′′1},{y′′1 ,y′′2 ,y′′3}) of Example 3.8. It is easy to see
that the inequalities −λ2 ≥ 0, λ1 ≥ 0 and −λ1 + λ2 ≥ 1 are enough for unsatisfiability
(n+ 1 inequalities, since n = 2). These inequalities correspond to x′′1 and y′′1 , and thus,
these two points witness the nonexistence of a LRF (note that this witness consists, in
this example, of less than n+ 2 points).

THEOREM 3.12. LINRF(Z) ∈ coNP for SLC loops.

PROOF. We show that the complement of LINRF(Z) has a polynomially checkable
witness. The witness is a listing of sets X and Y of at most n + 2 elements and has
a polynomial bit-size (specifically, a bit-size bounded as in Lemma 3.10). Verifying a
witness consists of the following steps:

Step 1. Verify that each x′′ ∈ X is in I(Q), which can be done by verifying A′′x′′ ≤ c′′;
and that each y′′ ∈ Y is in I(RQ), which can be done by verifying A′′y′′ ≤ 0. This is
done in polynomial time. Note that according to Lemma 3.5 it is not necessary to check
that X and Y come from a particular generator representation.

Step 2. Verify that WS (X,Y ) = Qn+1. This can be done by checking that ΨWS (X,Y )
has no solutions, which can be done in polynomial time since it is an LP problem over
Qn+1.

3.3. Inclusion in coNP for MLC Loops
In this section we consider the inclusion in coNP for MLC loops. For this, we assume
an input MLC loop with transition polyhedra Q1, . . . ,Qk where each Qi is specified by
A′′i x

′′ ≤ c′′i .
The proof follows the structure of the SLC case. The main difference is that points of

the witness may come from different transition polyhedra. Namely, X = X1 ∪ · · · ∪Xk

and Y = Y1 ∪ · · · ∪ Yk where each Xi ⊆ I(Qi) and Yi ⊆ I(RQi
). Lemmas 3.5, 3.7, and

3.10, Corollary 3.9, and Theorem 3.12, are rewritten in terms of such witnesses as
follows (the proofs are the same unless stated otherwise).

LEMMA 3.13. Let X = X1 ∪ · · · ∪ Xk and Y = Y1 ∪ · · · ∪ Yk, where Xi ⊆ I(Qi),
Yi ⊆ I(RQi

) and Yi 6= ∅ ⇒ Xi 6= ∅. If WS (X,Y ) = Qn+1, then there is no LRF for
I(Q1), . . . , I(Qk).

Note that WS (X,Y ) =
⋃k
i=1 WS (Xi,Yi) and that in the proof of Lemma 3.5 (when re-

used to obtain the above lemma) it is necessary to use the condition Yi 6= ∅ ⇒ Xi 6= ∅.
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LEMMA 3.14. For 1 ≤ i ≤ k, let QiI = convhull{Xi} + cone{Yi} be the integer hull
of Qi, and define X = X1 ∪ · · · ∪ Xk and Y = Y1 ∪ · · · ∪ Yk. If there is no LRF for
I(Q1), . . . , I(Qk), then WS (X,Y ) = Qn+1.

PROOF. The proof follows that of Lemma 3.7. We pick (λ0,~λ) ∈ Qn+1 \WS (X,Y ) and
show that ρ(x) = ~λ · x + λ0 is a LRF for all I(Qi). This is accomplished by performing
the same calculation, however referring to Xi and Yi when proving that ρ is a LRF for
I(Qi).

COROLLARY 3.15. There is no LRF for I(Q1), . . . , I(Qk), if and only if there are two
finite sets X = X1 ∪ · · · ∪Xk and Y = Y1 ∪ · · · ∪ Yk, where Xi ⊆ I(Qi) and Yi ⊆ I(RQi),
and Yi 6= ∅ ⇒ Xi 6= ∅, such that WS (X,Y ) = Qn+1.

LEMMA 3.16. If there exists a witness for the nonexistence of a LRF for
I(Q1), . . . , I(Qk), then there exists one with X = X1 ∪ · · · ∪ Xk and Y = Y1 ∪ · · · ∪ Yk,
where Xi ⊆ I(Qi) and Yi ⊆ I(RQi

), such that
∑k
i=1(|Xi|+ |Yi|) ≤ 2n+ 3; and its bit-size

is polynomially bounded in the bit-size of the input.

PROOF. Let X̂i, Ŷi be the generators of QiI . First, as in Lemma 3.10, we argue that
there is a set of at most n+ 2 inequalities out of ΨWS (

⋃
X̂i,

⋃
Ŷi) that have no solution.

These inequalities correspond to n+ 2 points out of the sets X̂i, Ŷi. Let Xi (respectively
Yi) be the set of points that come from X̂i (respectively Ŷi). Since (λ0,~λ) = 0T is not a
solution, at least one of the points must come from a set X̂i. But n + 1 other points
might come from sets Ŷi. Since a witness must satisfy Yi 6= ∅ ⇒ Xi 6= ∅, we may have to
add n+1 points to form a valid witness, for a total of 2n+3 (clearly, n+1 can be replaced
by k when k < n + 1). Bounding the bit-size of the witness is done as in Lemma 3.10,
but using the 2n+ 3 instead of n+ 2, and maxi ‖Qi‖b instead of ‖Q‖b.

THEOREM 3.17. LINRF(Z) ∈ coNP.

PROOF. Almost identical to the proof of Theorem 3.12. Note that the witness is given
as X = X1 ∪ · · · ∪Xk and Y = Y1 ∪ · · · ∪ Yk, and the verifier should use the appropriate
set of constraints to check that each x′′ ∈ Xi is in I(Qi), and that each y′′ ∈ Yi is in
I(RQi

).

Example 3.18. Consider again the integer MLC loop (3) from Section 1. It is a
classical MLC loop for which there is no LRF . The integer hulls of the corresponding
transition polyhedra are

Q1I = convhull{x′′1}+ cone{y′′1 ,y′′2 ,y′′3 ,y′′4}
Q2I = convhull{x′′2}+ cone{y′′5 ,y′′6}

where
x′′1 = (0, 0,−1, 0)T y′′1 = (0, 0, 0,−1)T y′′3 = (0, 1, 0, 0)T y′′5 = (0, 1, 0, 1)T

x′′2 = (0, 0, 0,−1)T y′′2 = (0, 0, 0, 1)T y′′4 = (1, 0, 1, 0)T y′′6 = (1, 0, 1, 0)T

Let us first consider each path separately. We get

ΨWS ({x′′1},{y′′1 ,y′′2 ,y′′3}) = {λ0 ≥ 0, λ1 ≥ 1, λ2 ≥ 0, − λ2 ≥ 0} (21)
ΨWS ({x′′2},{y′′4 ,y′′5 ,y′′6}) = {λ0 ≥ 0, λ1 ≥ 0, λ2 ≥ 1} (22)

Both (21) and (22) are satisfiable. In fact, their solutions define the corresponding
LRFs for each path when considered separately. For the MLC loop, we have that
ΨWS ({x′′1 ,x′′2},{y′′1 , . . . ,y′′6}) is the conjunction of the inequalities in (21) and (22), which
is not satisfiable. Thus, while each path has a LRF , the MLC loop does not. Note that
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the inequalities λ2 ≥ 1 and −λ2 ≥ 0 are enough to get unsatisfiability of (21,22), thus,
a possible witness is X1 = {x′′1}, Y1 = {y′′2}, X2 = {x′′2}, Y2 = ∅. Note that it consists of
less than 2n+ 3 points (as n = 2).

3.4. Synthesizing a Linear Ranking Function
Although the existence of a LRF suffices for proving termination, generating a com-
plete representation of the LRF is important in some contexts, for instance complexity
analysis where a ranking function provides an upper bound on the number of itera-
tions that a loop can perform. In this section we give a complete algorithm that gen-
erates LRFs for MLC loops given by transition polyhedra Q1, . . . ,Qk. The following
result is directly implied by lemmas 3.13 and 3.14.

THEOREM 3.19. For 1 ≤ i ≤ k, let QiI = convhull{Xi}+ cone{Yi} be the integer hull
of Qi, and define X = X1 ∪ · · · ∪Xk and Y = Y1 ∪ · · · ∪ Yk. Then, ρ(x) = ~λ · x + λ0 is a
LRF for I(Q1), . . . , I(Qk), if and only if (λ0,~λ) is a solution of ΨWS (X,Y ).

The following algorithm follows: (1) Compute the generator representation for each
QiI ; (2) Construct ΨWS (X,Y ); and (3) Use LP to find a solution (λ0,~λ) for ΨWS (X,Y ).

Example 3.20. Consider again Loop (1) from Section 1. The integer hull of the
transition polyhedron is

QI = convhull{x′′1 ,x′′2}+ cone{y′′1 ,y′′2}
where x′′1 = (1, 1, 1, 0)T, x′′2 = (1, 0, 1,−1)T, y′′1 = (1, 1, 1,−1)T, and y′′2 = (1,−1, 1,−3)T.
The formula ΨWS ({x′′1 ,x′′2},{y′′1 ,y′′2}) is the conjunction of the following inequalities
(we eliminated clearly redundant inequalities)

{λ1 + λ2 + λ0 ≥ 0, λ1 + λ0 ≥ 0, λ1 + λ2 ≥ 0, λ1 − λ2 ≥ 0, λ2 ≥ 1} (23)

which is satisfiable for λ1 = λ2 = 1 and λ0 = −1, and therefore, f(x1, x2) = x1 + x2 − 1
is a LRF . Note that the loop does not terminate when the variables range over Q, e.g.,
for x1 = x2 = 1

2 (see Figure 2(A)).

Example 3.21. Let us consider now Loop (2) from Section 1. The integer hull of the
transition polyhedron is

QI = convhull{x′′1 ,x′′2 ,x′′3 ,x′′4 ,x′′5 ,x′′6}+ cone{y′′1 ,y′′2}
where

x′′1 = (4, 16, 1, 16)T x′′3 = (2, 8, 1, 8)T x′′5 = (4, 1, 1, 1)T y′′1 = (5, 0, 2, 0)T

x′′2 = (1, 4, 0, 4)T x′′4 = (1, 1, 0, 1)T x′′6 = (2, 1, 1, 1)T y′′2 = (5, 20, 2, 20)T

The formula ΨWS ({x′′1 , . . . ,x′′6},{y′′1 ,y′′2}) is the conjunction of the following inequalities
(we eliminated clearly redundant ones){

λ1 ≥ 1, 4λ1 + λ2 + λ0 ≥ 0, 4λ1 + 16λ2 + λ0 ≥ 0, 2λ1 + λ2 + λ0 ≥ 0,
5λ1 + 20λ2 ≥ 0, 2λ1 + 8λ2 + λ0 ≥ 0, λ1 + 4λ2 + λ0 ≥ 0, λ1 + λ2 + λ0 ≥ 0

}
(24)

which is satisfiable for λ1 = 1, λ2 = 0 and λ0 = −1, and therefore, f(x1, x2) = x1 − 1 is
a LRF . Note that this loop, too, does not terminate when the variables range over Q,
e.g., for x1 = 1

4 and x2 = 1 (see Figure 2(C)).
If we consider both loops (1) and (2) as two paths in an MLC loop, then to synthesize

LRFs we use the conjunction of the inequalities in (23) and (24). In this case, λ1 =
λ2 = 1 and λ0 = −1, is a solution, but λ1 = 1, λ2 = 0 and λ0 = −1 is not. Therefore,
f(x1, x2) = x1 + x2 − 1 is a LRF for both paths, and thus for the MLC loop, but not
f(x1, x2) = x1 − 1.
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Given our hardness results, one cannot expect a polynomial-time algorithm. Indeed,
constructing the generator representation of the integer hull of a polyhedron from the
corresponding set of inequalities A′′i x ≤ c′′i may require exponential time—the number
of generators itself may be exponential. Their bit-size, on the other hand, is polynomial
by Theorem 2.8. This is interesting, since it yields:

COROLLARY 3.22. Consider an MLC loop specified by the transition polyhe-
dra Q1, . . . ,Qk, where each Qi is specified by A′′i x ≤ c′′i . If there is a LRF for
I(Q1), . . . , I(Qk), there is one whose bit-size is polynomial in the bit-size of {A′′i x ≤ c′′i },
namely in maxi ‖Qi‖b.

PROOF. As in the last section, we bound the bit-size of each of the generators of QiI
by ‖QiI‖v ≤ 6(2n)3 · ‖Qi‖f ≤ 48n3 · ‖Qi‖b for an appropriate i. This means that the
bit-size of each equation in ΨWS (X,Y ), having one of the forms (14), (15), (16), or (17)
is at most2 5 + 48n3 · (maxi ‖Qi‖b). Let P be the polyhedron defined by ΨWS (X,Y ), then
‖P‖f ≤ 5+48n3 ·(maxi ‖Qi‖b). If ΨWS (X,Y ) has a solution, then any vertex of P is such
a solution, and yields a LRF . Using Theorem 2.7, together with the above bound for
‖P‖f and the fact that the dimension of P is n+1, we conclude that there is a generator
representation for P in which the bit-size ‖P‖v of the vertices is bounded as follows:

‖P‖v ≤ 4 · (n+ 1)2 · ‖P‖f ≤ 4 · (n+ 1)2 · (5 + 48n3 · (max
i
‖Qi‖b))

This also bounds the bit-size of the corresponding LRF .

We conclude this section by noting that Theorem 3.19 works also for LINRF(Q), if
we consider Qi instead of QiI . This can be easily proven by reworking the proofs of
Lemmas 3.13 and 3.14 for the case of Qi instead of QiI . We did not develop this line
since the main use of these definitions is proving the coNP-completeness for LINRF(Z).
This, however, has an interesting consequence: LINRF(Q) is still PTIME even if the in-
put loop is given in the generator representations form instead of the constraints form.
Practically, implementations of polyhedra that use the double description method, such
as PPL [Bagnara et al. 2008b], in which both the generators and constraint represen-
tations are kept at the same time, can use the algorithm of Theorem 3.19 judiciously
when it seems better than algorithms that use the constraints representation [Podelski
and Rybalchenko 2004a; Mesnard and Serebrenik 2008].

4. SPECIAL CASES IN PTIME
In this section we discuss cases in which the LINRF(Z) problem is PTIME-decidable.
We start by a basic observation: when the transition polyhedron of an SLC loop is inte-
gral, the LINRF(Z) and LINRF(Q) problems are equivalent (a very similar statement
stated by Cook et al. [2010, Lemma 3]).

LEMMA 4.1. Let Q be a transition polyhedron of a given SLC loop, and let ρ be an
affine linear function. If Q is integral, then ρ is a LRF for Q if and only if ρ is a LRF
for I(Q).

PROOF. Let Q be an integer polyhedron. (⇒) Suppose that ρ is a LRF for Q, then
clearly it is also a LRF for I(Q) since I(Q) ⊆ Q. (⇐) Suppose that ρ is a LRF for
I(Q), it thus satisfies (7,8) of Definition 2.9 for any integer point in Q. However, by
definition of an integer polyhedron, every rational point in Q is a convex combination
of integer points from I(Q), this proves that ρ satisfies conditions (7,8) for any rational

2According to Section 2.1, the bit-size of inequality (14) is ‖~λ · x + λ0 ≥ 0‖b = 1 + ‖(1,x)‖b + ‖0‖b =
5 + ‖x‖b ≤ 5 + ‖QiI‖v ≤ 5 + 48n3 · (maxi ‖Qi‖b). The bit-size of (15)-(17) is similar.
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Fig. 2. The polyhedra associated with three of our examples, projected to two dimensions: (A) corresponds
to Loop (1) at Page 1; (B) corresponds to the loop in Example 4.13 at Page 21; and (C) corresponds Loop (2)
at Page 2. Dashed lines are added when computing the integer hull; dotted areas represent the integer hull;
gray areas are rational points eliminated when computing the integer hull.

point in Q, as follows. Choose an arbitrary rational point x′′ ∈ Q. It can be written as
x′′ =

∑
ai · x′′i where ai > 0,

∑
ai = 1 and x′′i ∈ I(Q). Thus, x′′ =

(∑ ai·xi∑
ai·x′i

)
, and

ρ(x) = (~λ ·
∑

ai · xi) + λ0 =
∑

ai · (~λ · xi + λ0) ≥ 0

∆ρ(x′′) = (~λ ·
∑

ai · xi)− (~λ ·
∑

ai · x′i) =
∑

ai · ~λ · (xi − x′i) ≥ 1

The above lemma provides an alternative, and complete, procedure for LINRF(Z),
namely, compute a constraint representation of its integer hull QI and solve
LINRF(Q). Note that computing the integer hull might require exponential time, and
might also result in a polyhedron with an exponentially larger description. This means
that the above procedure is exponential in general; but this concern is circumvented
if the transition polyhedron is integral to begin with; and in special cases where it is
known that computing the integer hull is easy. Formally, we call a class of polyhedra
easy if computing its integer hull can be done in polynomial time.

Example 4.2. Consider again the SLC loop (2) of Section 1. The transition polyhe-
dron is not integral, computing its integer hull adds the inequalities −x1 + x′1 ≤ −1
and 1

3x1−x
′
1 ≤ 1

3 . This is depicted in Figure 2(C). Applying LINRF(Q) on this loop does
not find a LRF since it does not terminate when the variables range over Q, however,
applying it on the integer hull finds the LRF f(x1, x2) = x1 − 1.

COROLLARY 4.3. The LINRF(Z) problem is PTIME-decidable for SLC loops in
which the transition polyhedron Q is guaranteed to be integral. This also applies to any
easy class of polyhedra, namely a class where the integer hull is PTIME-computable.

PROOF. Immediate from Lemma 4.1 and the fact that LINRF(Q) is PTIME-
decidable.

COROLLARY 4.4. The LINRF(Z) problem is PTIME-decidable for SLC loops in
which the condition polyhedron C is guaranteed to be integral, or belongs to an easy
class, and the update is affine linear with integer coefficients.
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PROOF. We show that if C is integral, the transition polyhedron Q is also integral,
and thus Corollary 4.3 applies. Let the condition polyhedron C be integral, and the
update be x′ = A′x + c′ where the entries of A′ and c′ are integer. Let x′′ ∈ Q, that
is, x ∈ C and x′ = A′x + c′. Since C is integral, x is a convex combination of some
integer points. I.e., x =

∑
ai · xi where ai > 0,

∑
ai = 1 and xi ∈ I(C). Hence, x′ =

A′(
∑
ai · xi) + c′ =

∑
ai · (A′xi + c′) and

x′′ =

(
x
x′

)
=

( ∑
ai · xi∑

ai · (A′xi + c′)

)
=
∑

ai ·
(

xi
A′xi + c′

)
Now note that

(
xi

A′xi+c′

)
are integer points from I(Q), which implies that x′′ is a convex

combination of integer points in Q. Hence, Q is integral.

Corollaries 4.3 and 4.4 suggest looking for classes of SLC loops where we can easily
ascertain that Q is integral, or that its integer hull can be computed in polynomial
time. In what follows we address such cases: Section 4.1 discusses special cases in
which the transition or condition polyhedron is integral by construction; Section 4.2
considers cases in which the the transition or condition polyhedron can be separated
into independent groups of constraints, each involving few variables; Section 4.3 dis-
cusses the case of octagonal relations; Section 4.4 shows that for some cases LINRF(Z)
is even strongly polynomial; and Section 4.5 extends the results to MLC loops.

4.1. Loops Specified by Integer Polyhedra
There are some well-known examples of polyhedra that are known to be integral due
to some structural property. This gives us classes of SLC loops where LINRF(Z) is in
PTIME. The examples below follows Schrijver [1986], where the proofs of the lemmas
can be found.

LEMMA 4.5 ([Schrijver 1986, Eq. (9), p. 230]). For any rational matrix B, the cone
{x | Bx ≤ 0} is an integer polyhedron.

COROLLARY 4.6. The LINRF(Z) problem is PTIME-decidable for SLC loops of the
form

while (Bx ≤ 0) do x′ = A′x + c′

where the entries in A′ and c′ are integer.

Recall that a matrixA is totally unimodular if each subdeterminant ofA is in {0,±1}.
In particular, the entries of such matrix are from {0,±1}.

LEMMA 4.7 ([Schrijver 1986, Th. 19.1, p. 266]). For any totally unimodular matrix
A and integer vector b, the polyhedron P = {x | Ax ≤ b} is integral.

For brevity, if a polyhedron P is specified by Ax ≤ b in which A is a totally unimod-
ular matrix and b an integer vector, we say that P is totally unimodular.

COROLLARY 4.8. The LINRF(Z) problem is PTIME-decidable for SLC loops in
which (1) the transition polyhedron Q is totally unimodular; or (2) the condition poly-
hedron C is totally unimodular and the update is affine linear with integer coefficients.

As a notable example, difference bound constraints [Ben-Amram 2008; Bozzelli and
Pinchinat 2012; Bozga et al. 2012] are defined by totally unimodular matrices. Such
constraints have the form x − y ≤ d with d ∈ Q; constraints of the form ±x ≤ d can
also be admitted. In the integer case we can always tighten d to bdc and thus get an
integer polyhedron. It might be worth mentioning that checking if a matrix is totally
unimodular can be done in polynomial time [Schrijver 1986, Th. 20.3, p. 290].
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On the other hand, highlighting the gap between linear-ranking proofs and termi-
nation proofs in general, we may note that MLC loops with difference bounds, even
restricted to the forms xi ≥ 0 and x′i ≤ xj +c, already have an undecidable termination
problem [Ben-Amram 2008].

4.2. Bounded Number of Variables
In this section we consider cases in which the input loop can be decomposed into dif-
ferent components that do not share variables, and each involves at most N variables
for an arbitrary fixed N . We start with N = 2, and towards the end of this section we
consider larger values of N .

Two variable per inequality constraints (TVPI for short) are inequalities of the form
ax + by ≤ d with a, b, d ∈ Q. Clearly, polyhedra defined by such inequalities are not
guaranteed to be integral. See, for example, Figure 2(B). Harvey [1999] showed that for
two-dimensional polyhedra, which are specified by TVPI constraints by definition, the
integer hull can be computed in O(m logAmax) where m is the number of inequalities
and Amax is the magnitude of the largest coefficient.

Definition 4.9. Let T be a set of constraints. We say that the polyhedron specified
by T is a product of independent two-dimensional TVPI polyhedra (PTVPI for short),
if T can be partitioned into T1, . . . , Tn such that (1) each Ti is two-dimensional, i.e.,
involves at most two variables; and (2) each distinct Ti and Tj do not share variables.

LEMMA 4.10. The integer hull of PTVPI polyhedra can be computed in polynomial
time.

PROOF. Recall that a polyhedron P is integral if and only if each of its faces has an
integer point. A face of P is obtained by turning some inequalities to equalities such
that the resulting polyhedron in not empty (over the rationals). First we claim that if T1
and T2 are two sets of inequalities that do not share variables, and the corresponding
polyhedra T1, T2 are integral, then T1 ∪ T2 specifies an integral polyhedron T over the
combined set of variables. Note that T = T1×T2. To prove our claim, note that a face of
T is specified by some constraints defining a face of T1 and some constraints defining
a face of T2. Since each has an integer point, we get an integer point (in the combined
set of variables) satisfying all constraints, i.e., belonging to a face of T .

To compute the integer hull of a PTVPI polyhedron T , we partition its constraints T
into independent sets T1, . . . , Tn, and compute the integer hull of each Ti in polynomial
time using Harvey’s method. The above argument shows that T1I×· · ·×TnI is integral.
Moreover, every integer point of T , when projected into the set of variables associated
with Ti, is still integer, hence in TiI , which shows that T1I ×· · ·×TnI is the integer hull
of T .

The above approach can easily be generalized. Given any polyhedron, we first de-
compose it into independent sets of inequalities, in polynomial time (these are the
connected components of an obvious graph), and then check if each set is covered by
any of the special cases for which the integer hull can be efficiently computed.

COROLLARY 4.11. The LINRF(Z) problem is PTIME-decidable for SLC loops in
which: (1) the transition polyhedron Q is PTVPI ; or (2) the condition polyhedron C is
PTVPI , and the update is affine linear with integer coefficients.

Example 4.12. Consider the following SLC loop, as an example for case (1) of Corol-
lary 4.11

while (4x1 ≥ 1, x2 ≥ 1) do
2x1 − 5x′1 ≤ 3, − 2x1 + 5x′1 ≤ 1, x′2 = x2 + 1

(25)
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Applying LINRF(Q) does not find a LRF since the loop does not terminate when
the variables range over Q, e.g., for x1 = 1

4 and x2 = 1. The transition polyhe-
dron is not integral, however, it is PTVPI since the constraints can be divided into
T1 = {4x1 ≥ 1, 2x1 − 5x′1 ≤ 3, −2x1 + 5x′1 ≤ 1} and T2 = {x2 ≥ 1, x′2 = x2 + 1}. It is
easy to check that T2 is already integral. Computing the integer hull of T1 adds the
inequalities −x1 + x′1 ≤ −1 and 1

3x1 − x
′
1 ≤ 1

3 . See Figure 2(C). Now LINRF(Q) finds
the LRF f(x1, x2) = x1 − 1.

Example 4.13. Consider the following SLC loop, as an example for case (2) of Corol-
lary 4.11

while (−x1 + x2 ≤ 0, − 2x1 − x2 ≤ −1, x3 ≤ 1) do
x′1 = x1, x′2 = x2 − 2x1 + x3, x′3 = x3

(26)

Applying LINRF(Q) does not find a LRF since it does not terminate over Q, e.g., for
x1 = x2 = 1

2 and x3 = 1. The condition polyhedron is not integral, but it is PTVPI since
the constraints can be divided into T1 = {−x1 + x2 ≤ 0, − 2x1 − x2 ≤ −1} and T2 =
{x3 ≤ 1}. It is easily seen that T2 is already integral; computing the integer hull of T1
adds x1 ≥ 1. See Figure 2(B). Now LINRF(Q) finds the LRF f(x1, x2, x3) = 2x1 +x2−1.
Note that the update in this loop involves constraints which are not TVPI .

The special case described above is based on the fact that LINRF(Z) for two-
dimensional polyhedra is PTIME. In the rest of this section we show that it is PTIME
for N -dimensional polyhedra, for a fixed constant N , as well. Given a polyhedron P,
as a set of linear inequalities Ax ≤ b with n variables and m inequalities, Hartmann
[1988, Sec. 4.2] describes an algorithm for computing the vertices v1, . . . ,v` of PI . This
algorithm is exponential in the the number of variables n (for fixed n, it is polynomial
in the bit-size of P). This means that if we require n ≤ N , for an arbitrary fixed N , we
get a polynomial-time algorithm. Note that in such case the number of vertices, `, and
the bit-size of each one, are both polynomial in the bit-size of P.

Assuming that P represents a transition or condition polyhedron, in order to ap-
ply LINRF(Q) it is not enough to have the vertices of PI , what we need is a complete
representation of PI by constraints or by generators . The latter is excluded since the
recession cone of PI (which is the same as the one of P) can have an exponential num-
ber of generators. We next explain how to make use of the constraints representation.

First note that PI = convhull{v1, . . . ,v`}+RP , where RP is the recession cone of P,
and recall that RP = {y ∈ Qn | Ay ≤ 0}. Define the polyhedron P ′ as:

P ′ =

{
(x,a,y)

∣∣∣∣∣ a1 ≥ 0 ∧ · · · ∧ a` ≥ 0 ∧
∑̀
i=1

ai = 1 ∧ x =

(∑̀
i=1

aivi

)
+ y ∧Ay ≤ 0

}
It is easy to see that x ∈ PI if and only if (x,a,y) ∈ P ′ for some a and y. The constraint
representation for PI can be computed by projecting P ′ on its first n components x,
however, this may take an exponential time. The projection can be avoided by directly
using P ′, and constraining the LRF to not use variables from (a,y)3. This yields a
polynomial-time algorithm for LINRF(Z), for the case of N -dimensional polyhedra,
since the bit-size of P ′ is polynomial in the bit-size of P.

4.3. Octagonal Relations
TVPI constraints in which the coefficients are from {0,±1} have received consider-
able attention in the area of program analysis. Such constraints are called octagonal

3Such a constraint can be easily imposed when using the Podelski-Rybalchenko procedure, as described in
Sections 4.4 and 4.5.
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relations [Miné 2006]. A particular interest was in developing efficient algorithms for
checking satisfiability of such relations, as well as inferring all implied octagonal in-
equalities, for variables ranging either over Q or over Z.

Over Q, this is done by computing the transitive closure of the relation, which ba-
sically adds inequalities that result from the addition of two existing inequalities,
and possibly scaling to obtain coefficients of ±1. For example: starting from the set
of inequalities {−x1 + x2 ≤ 0, −x1 − x2 ≤ −1}, we add −2x1 ≤ −1, or, after scaling,
−x1 ≤ − 1

2 . Over Z, this is done by computing the tight closure, which in addition to
transitivity, is closed also under tightening. This operation replaces ax + by ≤ d by
ax + by ≤ bdc. For example, tightening −x1 ≤ − 1

2 yields −x1 ≤ −1. The tight closure
can be computed in polynomial time [Harvey and Stuckey 1997; Bagnara et al. 2008a;
Revesz 2009]. Since the tightening eliminates some non-integer points, it is tempting
to expect that it actually computes the integer hull. It is easy to show that this is true
for two-dimensional relations, but it is false already in three dimensions, as we show
in the following example.

Example 4.14. Consider the following SLC loop

while (x1 + x2 ≤ 2, x1 + x3 ≤ 3, x2 + x3 ≤ 4) do
x′1 = 1− x1, x′2 = 1 + x1, x′3 = 1 + x2

(27)

Note that the transition polyhedron is octagonal, but not integral. Applying LINRF(Q)
does not find a LRF , since the loop does not terminate over Q, e.g., for x1 = 1

2 , x2 = 3
2 ,

and x3 = 5
2 . Computing the tight closure does not change the transition (or condition)

polyhedron, and thus, it is of no help in finding the LRF . In order to obtain the integer
hull of the transition (or condition) polyhedron we should add x1 + x2 + x3 ≤ 4, which
is not an octagonal inequality. Having done so, LINRF(Q) finds the LRF f(x1, x2, x3) =
−3x1 − 4x2 − 2x3 + 12.

Although it is not guaranteed that the tight closure of an octagonal relation cor-
responds to its integer hull, in practice, it does in many cases. Thus, since it can be
computed in polynomial time, we suggest computing it before applying LINRF(Q) on
loops that involve such relations. The above example shows that this does not give us
a complete polynomial-time algorithm for LINRF(Z) over octagonal relations.

Example 4.15. Consider Loop (1) of Section 1 in which the condition is an octagonal
relation. LINRF(Q) fails to find a LRF since the loop may fail to terminate for rational-
valued variables. Computing the tight closure of the condition polyhedron adds the in-
equality x1 ≥ 1, making the polyhedron integral. See Figure 2(A). Now LINRF(Q) finds
the LRF f(x1, x2) = x1 + x2 − 1. Let us consider an example with higher dimensions

while (−x1+x2 ≤ 0, − x1 − x2 ≤ −1, x2 − x3 ≤ 0, − x2 − x3 ≤ −1) do
x′1 = x1, x′2 = x2 − x1 − x3 + 1, x′3 = x3

The condition polyhedron is octagonal, but not integral; moreover, it is not PTVPI .
LINRF(Q) does not find a LRF (indeed the loop fails to terminate for x1 = x2 = x3 = 1

2 ).
Computing the tight closure of the condition adds −x1 ≤ −1 and −x3 ≤ −1, which
results in the integer hull. Now LINRF(Q) finds the LRF f(x1, x2, x3) = x1 + x2 − 1.

A polynomial-time algorithm for computing the integer hull of octagonal relations
is, unfortunately, ruled out by examples of such relations whose integer hulls have
exponentially many facets.

THEOREM 4.16. There is no polynomial-time algorithm for computing the integer
hull of general octagonal relations.
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PROOF. We build an octagonal relation O, such that the minimum number of in-
equalities required to describe its integer hull OI is not polynomial in the number of
inequalities in O.

For a complete graph Kn = 〈V,E〉, we let P be defined by the set of inequalities
{xe ≥ 0 | e ∈ E} ∪ {

∑
v∈e xe ≤ 1 | v ∈ V }. Here every edge e ∈ E has a corresponding

variable xe, and the notation v ∈ e means that v is a vertex of edge e. Note that P
is not octagonal. It is well-known that PI , the matching polytope of Kn, has at least(
n
2

)
+2n−1 facets [Schrijver 1986, Sec. 18.2, p. 251], and thus any set of inequalities that

defines PI must have at least the same number of inequalities. Now let O be defined
by {xe ≥ 0 | e ∈ E} ∪ {xe1 + xe2 ≤ 1 | v ∈ e1, v ∈ e2}, which includes n + n ·

(
n−1
2

)
octagonal inequalities. It is easy to see that the integer solutions of P and O are the
same, and thus PI = OI . This means that any set of inequalities that define OI must
have at least

(
n
2

)
+ 2n−1 inequalities. Therefore, any algorithm that computes such a

representation must add at least
(
n
2

)
+ 2n−1 − n − n ·

(
n−1
2

)
inequalities to O, which is

super-polynomial in the size of O. Unsurprisingly, the tight closure of O does not yield
its integer hull (it only adds xe ≤ 1 for each xe).

Note that the above theorem does not rule out a polynomial-time algorithm for
LINRF(Z), for SLC loops in which the transition polyhedron Q is octagonal, or where
the condition polyhedron is octagonal and the update is affine linear with integer co-
efficients. It just rules out an algorithm that is based on computing the integer hull of
the polyhedra. However, the coNP-hardness proof of Section 3.1 could be also carried
out by a reduction from 3SAT that produces an SLC loop where the condition is octag-
onal and the update is affine linear with integer coefficients—so at least for this class
there is, presumably, no polynomial solution. We present this reduction next.

THEOREM 4.17. The LINRF(Z) problem is strongly coNP-hard, even for determin-
istic SLC loops where the guard is octagonal.

PROOF. We exhibit a polynomial-time reduction from 3SAT to the complement of
LINRF(Z) (keeping all the numbers in the resulting instance polynomially bounded,
to obtain strong coNP-hardness).

Consider a 3SAT instance given as a collection of m clauses, C1, . . . , Cm, each clause
Ci consisting of three literals Lji ∈ {x1, . . . , xn, x̄1, . . . , x̄n}. We construct a loop over 4m

variables. Variable xij corresponds to Lji . Variable xi0 is a control variable to ensure
the satisfaction of clause i, as will be seen below. Let C be the set of all conflicting
pairs, that is, pairs ((i, j), (r, s)) such that Lji is the complement of Lsr, and also pairs
((i, j), (i, j′)) with 1 ≤ j < j′ ≤ 3. The loop we construct is:

while

 ∧
((i,j),(r,s))∈C

xij + xrs ≤ 1

 ∧
 ∧

1≤i≤m, 0≤j≤3

0 ≤ xij ≤ 1


do

 ∧
1≤i≤m, 1≤j≤3

x′ij = xij

 ∧
 ∧

1≤i≤m

x′i0 = xi0 + xi1 + xi2 + xi3 − 1


Suppose the formula is satisfiable. For every clause, choose a satisfied literal, and

set the corresponding variable xij to 1; let all other variables be zero. Observe that all
the inequality constraints are fulfilled, and that the value of each x′i0 does not change.
Hence, the loop does not terminate, and does not have any ranking function, let alone
a LRF .
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Next, suppose the formula is unsatisfiable. An initial state for which the loop guard
is enabled may be interpreted as a selection of non-conflicting literals. Since no such
selection can satisfy all clauses, looking at the update of the xi0 variables, we see that
some may stay unchanged, while some (and at least one) will decrease. It follows that∑
i xi0 is a LRF .

4.4. Strongly Polynomial Cases
Polynomial-time algorithms for LINRF(Q) [Podelski and Rybalchenko 2004a; Mesnard
and Serebrenik 2008; Alias et al. 2010] inherit their complexity from that of LP . While
it is known that LP can be solved by a polynomial-time algorithm, it is an open prob-
lem whether it has a strongly polynomial algorithm. Such an algorithm should perform
a number of elementary arithmetic operations polynomial in the dimensions of the in-
put matrix instead of its bit-size (which accounts for the size of the matrix entries),
and such operations should be performed on numbers of size which is polynomial to
the input bit-size. However, there are some cases for which LP is known to have a
strongly polynomial algorithm. We first use these cases to define classes of SLC loops
for which LINRF(Q) has a strongly polynomial algorithm, which we then use to show
that LINRF(Z) has a strongly polynomial algorithm for some corresponding classes
of SLC loops. Our results are based on the following result by Tardos [1986] (quot-
ing Schrijver [1986, p. 196]).

THEOREM 4.18 (TARDOS). There is an algorithm which solves a rational LP prob-
lem max{c · x | Ax ≤ b} with at most P (size(A)) elementary arithmetic operations on
numbers of size polynomially bounded by size(A,b, c), for some polynomial P .

Note that the number of arithmetic operations required by the LP algorithm only
depends on the bit-size of A. Clearly, if we restrict the LP problem to cases in which
the bit-size of the entries of A is bounded by a constant, then size(A) depends only on
its dimensions, and we get a strongly polynomial time algorithm. In particular we can
state the following.

COROLLARY 4.19. There exists a strongly polynomial algorithm to solve an LP
problem max{c · x | Ax ≤ b} where the entries of A are {0,±1,±2}.

We can use this to show that LINRF(Q) can sometimes be implemented with
strongly polynomial complexity. To do this, we use the Podelski-Rybalchenko formu-
lation of the procedure [Podelski and Rybalchenko 2004a], slightly modified to require
that the LRF decreases at least by 1 instead of by some δ > 0 (this modification only
affects (28e) below; the right-hand side of the inequality is −δ, so in their formulation
the inequality was ~η · c′′ < 0).

THEOREM 4.20 (PODELSKI-RYBALCHENKO). Given an SLC loop with a transition
polyhedron Q ⊆ Q2n, specified by A′′x′′ ≤ c′′, let A′′ = (A A′) where each A and A′ has
n columns and m rows each, and let ~µ, ~η be row vectors of different m rational variables
each. A LRF for Q exists if and only if there is a (rational) solution to the following set
of constraints

~µ, ~η ≥ 0T , (28a)
~µ ·A′ = 0T , (28b)

(~µ− ~η) ·A = 0T , (28c)
~η · (A+A′) = 0T , (28d)

~η · c′′ ≤ −1 . (28e)
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THEOREM 4.21. The LINRF(Q) problem is decidable in strongly polynomial time
for SLC loops specified by A′′x′′ ≤ c′′ where the coefficients of A′′ are from {0,±1}.

PROOF. First observe that, in Theroem 4.20, when the matrix A′′ has only entries
from {0,±1}, then all coefficients in the constraints (28a–28d) are from {0,±1,±2}.
Moreover, the number of inequalities and variables in (28a–28d) is polynomial in the
dimensions of A′′. Now let us modify the Podelski-Rybalchenko procedure such that
instead of testing for feasibility of the constraints (28a–28e), we consider the min-
imization of ~η · c′′ under the other constraints (28a–28d). Clearly, this answers the
same question since: (28a–28e) is feasible, if and only if the minimization problem is
unbounded, or the minimum is negative. This brings the problem to the form required
by Corollary 4.19 and yields our result.

COROLLARY 4.22. The LINRF(Z) problem is decidable in strongly polynomial time
for SLC loops, specified by A′′x′′ ≤ c′′ where the coefficients of A′′ are from {0,±1}, that
are covered by any of the special cases of Section 4.1 and the special case of PTVPI
constraints of Section 4.2.

PROOF. In the cases of Section 4.1, the transition polyhedron is guaranteed to be
integral. In the PTVPI case of Section 4.2: (1) the integer hull can be computed using
Harvey’s procedure, which is strongly polynomial in this case since the entries of A are
from {0,±1}. This can be done also using the tight closure of 2-dimensional octagons;
and (2) the TVPI constraints that we add when computing the integer hull have coeffi-
cients from {0,±1}, and the number of such constraints is polynomially bounded by the
number of the original inequalities. Thus, by Theorem 4.21, we can apply a strongly
polynomial-time algorithm for LINRF(Q).

4.5. Multipath Loops
It follows immediately from the definitions that an affine linear function ρ is a LRF for
an MLC loop with transition polyhedraQ1, . . . ,Qk if and only if it is a LRF for eachQi.
Thus, if we have the set of LRFs for each Qi, we can simply take the intersection and
obtain the set of LRFs for Q1, . . . ,Qk. In the Podelski-Rybalchenko procedure, the set
of solutions for the inequalities (28a–28e) defines the set of LRFs for the corresponding
SLC loop as follows.

LEMMA 4.23. Given an SLC loop with a transition polyhedron Q, specified by
A′′x′′ ≤ c′′, let Γ(~µ, ~η,A′′, c′′) be the conjunction of (28a–28e). Then, ρ(x) = ~λ · x + λ0
is a LRF for Q if and only if Γ(~µ, ~η,A′′, c′′) has a solution such that ~λ = ~η · A′ and
λ0 ≥ ~µ · c′′.

Next we show how to compute, using the above lemma, the intersection of sets of
LRFs for several transition polyhedra, and thus obtain the set of LRFs for a given
MLC loop (a very similar statement stated by Cook et al. [2010, Lemma 3]).

THEOREM 4.24. Given an MLC loop with transition polyhedra Q1, . . . ,Qk, each
specified by A′′i x′′ ≤ c′′i , let Γ(~µi, ~ηi, A

′′
i , c
′′
i ) be the constraints (28a–28e) for the i-th path,

and (λ0,~λ) be n+ 1 rational variables. Then there is a LRF for Q1, . . . ,Qk if and only if
the following is feasible (over the rationals)

k∧
i=1

Γ(~µi, ~ηi, A
′′
i , c
′′
i ) ∧ ~λ = ~ηi ·A′i ∧ λ0 ≥ ~µi · c′′i (29)

Moreover, the values of (λ0,~λ) in the solutions of (29) define the set of all LRFs for
Q1, . . . ,Qk.
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PROOF. Immediate by Lemma 4.23, noting that for each 1 ≤ i ≤ k the constraints
Γ(~µi, ~ηi, A

′′
i , c
′′
i ) uses different ~µi and ~ηi, while (λ0,~λ) are the same for all i.

COROLLARY 4.25. The LINRF(Q) problem for MLC loops is PTIME-decidable.

PROOF. The size of the set of inequalities (29) is polynomial in the size of the input
MLC loop, and checking if it has a rational solution can be done in polynomial time.

COROLLARY 4.26. The LINRF(Z) problem for MLC loops is PTIME-decidable when
each path corresponds to one of the special cases, for SLC loops, discussed in sections 4.1
and 4.2.

PROOF. Immediate, since if the transition polyhedra are integral, LINRF(Z) and
LINRF(Q) are equivalent.

Example 4.27. Consider an MLC loop with the following two paths: Loop (1) of
Section 1; and the loop of Example 4.12. Applying LINRF(Q) (as in Theorem 4.24) does
not find a LRF since both paths do not terminate when the variables range over Q. If
we first compute the integer hull of both paths, LINRF(Q) finds the LRF f(x1, x2) =
3x1+x2−2. Note that the integer hull of the first path is computable in polynomial time
since the condition is PTVPI and the update is affine linear with integer coefficients.
That of the second path has been computed in Example 4.12.

We conclude our discussion on the special PTIME cases for LINRF(Z) with a sum-
mary table (Figure 3), that briefly describes each case and illustrates it with an exam-
ple.

5. THE LEXICOGRAPHIC-LINEAR RANKING PROBLEM
In this section we turn to the problems of finding a Lexicographic-Linear Ranking
Function (LLRF ), or determining if one exist (as defined in Section 2.4). We study
the complexity of both LEXLINRF(Z) and LEXLINRF(Q) and develop corresponding
complete algorithms for synthesizing LLRFs (moreover, LLRFs of smallest dimension).

In Section 5.1 we consider the LEXLINRF(Z) problem, and develop a synthesis al-
gorithm which has exponential-time complexity in general, and polynomial-time com-
plexity for the special cases of Section 4. We also provide sufficient and necessary con-
ditions for the existence of a LLRF which imply the completeness of our algorithm.
These conditions are used in Section 5.2 to show that LEXLINRF(Z) is coNP-complete.

In Section 5.3 we consider the LEXLINRF(Q) problem. We observe that applying
the algorithm of Section 5.1, which is complete for the integer case, does not result
in general in a LLRF for a rational loop, but just what we call a weak LLRF . This
is a LLRF as in Definition 2.11 but changing (11) to ∆ρ(x′′) > 0. It is not immediate
that a weak ranking function even implies termination, since ∆ρ(x′′) can be arbitrarily
close to zero. However, we prove that it does, and in fact such a weak ranking function
can be converted to a LLRF . This provides a complete polynomial-time algorithm for
LEXLINRF(Q) (which is also optimal with respect to the dimension).

In the rest of this section we assume an input MLC loop specified by the transition
polyhedra Q1, · · · ,Qk, where each Qi is given as a system of inequalities Ax′′ ≤ c′′i .
Since we handle MLC loops, our results apply to SLC loops as a special case; we would
like to point out, however, that the coNP-hardness already applies to SLC loops (Sec-
tion 5.2), and that some interesting examples which demonstrate the advantage of
LLRFs over LRFs use just SLC loops (e.g., Example 2.12 on Page 9).
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(1) Q is totally unimodular (e.g., DBM). In this case Q is already integral.

while (x1 ≤ x2, x2 ≤ x3) do x′1 ≥ x1 + 1, x′3 ≤ x3
We compute the LRF f(x1, x2, x3) = x3 − x1.

(2) Q is N -dimensional. In this case we compute the integer hull of Q.

while (4x1 ≥ 1) do 5x′1 ≤ 2x1 + 1, 5x′1 ≥ 2x1 − 3

Computing the integer hull of Q adds −x1 + x′1 ≤ −1 and 1
3x1 − x

′
1 ≤ 1

3 . Then
we compute the LRF f(x1) = x1 − 1.

(3) The update is affine linear with integer coefficients, and C is a cone. In this
case Q is already integral.

while (x1 + x2 ≥ 0, 2x2 + x3 ≥ 0) do
x′1 = x1 − 2x2 − x3 − 1, x′2 = x2, x

′
3 = x3

We compute the LRF f(x1, x2, x3) = x1 + x2.

(4) The update is affine linear with integer coefficients, and C is totally unimodu-
lar. In this case Q is already integral.

while (x1 ≤ x2, x3 − x2 ≥ 1) do x′1 = x1 + x3 − x2, x′2 = x2, x
′
3 = 2x3

We compute the LRF f(x1, x2, x3) = x2 − x1.

(5) The update is affine linear with integer coefficients, and C is N -dimensional.
In this case we compute the integer hull of C.

while (−x1 + x2 ≤ 0,−2x1 − x2 ≥ −1) do x′1 = x1, x
′
2 = x2 − 2x1 + 1

Computing the integer hull of C adds x1 ≥ 1. Then we compute the LRF
f(x1, x2) = 2x1 + x2 − 1.

(6) The update is affine linear with integer coefficients, and C can be partitioned
into independent sets where each is either a cone, totally unimodular, or N -
dimensional. In the case of N -dimensional we compute its integer hull.

while (−x1 + x2 ≤ 0,−2x1 − x2 ≥ −1, x3 ≤ 1) do
x′1 = x1, x

′
2 = x2 − 2x1 + x3, x

′
3 = x3

C is partitioned into T1 = {−x1 +x2 ≤ 0, − 2x1−x2 ≤ −1} and T2 = {x3 ≤ 1}.
T1 is N -dimensional and T2 is totally unimodular. Computing the integer hull
of T1 adds x1 ≥ 1. Then we compute the LRF f(x1, x2, x3) = 2x1 + x2 − 1.

(7) Q can be partitioned into independent sets that are covered by cases (1)-(6).

while (4x1 ≥ 1, x2 ≥ 1) do 2x1 − 5x′1 ≤ 3,−2x1 + 5x′1 ≤ 1, x′2 = x2 + 1

C is partitioned into T1 = {4x1 ≥ 1, 2x1 − 5x′1 ≤ 3, −2x1 + 5x′1 ≤ 1} and T2 =
{x2 ≥ 1, x′2 = x2 + 1}, which are covered by cases (2) and (4). The integer hull
of T1 is as in case (4). Then we compute the LRF f(x1, x2) = x1 − 1.

(8) An MLC loop where each path is covered by cases (1)-(7).

Fig. 3. Summary of special PTIME cases of LINRF(Z): (1)-(7) summarize the special cases of sections 4.1
and 4.2 for SLC loops; (8) summarizes the special cases of Section 4.5 for MLC loops. Recall that: Q is
the set of constraints that define the loop; C is the set of constraints that define the loop condition; and
N -dimensional means at most N variables, for a fixed N (above we assume N = 2).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



A:28

5.1. A Complete Algorithm for LEXLINRF(Z)
The basic building blocks for our LLRFs are non-trivial quasi-LRFs. These are similar
to LRFs, except that ∆ρ(x′′) > 0 is not required to hold for all transitions, but rather
for at least one.

Definition 5.1. We say that an affine linear function ρ is a quasi-LRF for T ⊆ Q2n

if for every x′′ ∈ T the following holds:

ρ(x) ≥ 0 (30)
∆ρ(x′′) ≥ 0 (31)

We say that it is non-trivial if, in addition, inequality (31) is strict, i.e., ∆ρ(x′′) > 0, for
at least one x′′ ∈ T .

We say that ρ is a quasi-LRF for a rational (respectively integer) loop if it is a quasi-
LRF for its transition polyhedra (respectively, their integer points).

Example 5.2. Consider the SLC loop (12) of Example 2.12: ρ1(x1, x2, x3) = x2 is a
non-trivial quasi-LRF ; ρ2(x1, x2, x3) = x1 is not because ∆ρ2(x′′) ≥ 0 does not hold for
all transitions; and ρ3(x1, x2, x3) = x3 is not because ρ3(x) < 0 for x = (2, 1,−1). Now
consider the MLC loop (3) of Section 1: ρ4(x1, x2) = x1 is a non-trivial quasi-LRF for
both paths of this loop; and ρ5(x1, x2) = x2 is not quasi-LRF since ∆ρ5(x′′) ≥ 0 does
not hold for all transitions, e.g., it fails for x′′ = (2, 2, 1, 3). Note that ρ5 is a quasi-LRF
for the second path, but this is not enough.

Note that when dealing with integer points, we can safely assume that whenever
the function decreases in a transition, it decreases at least by 1. In fact, this holds for
all affine functions with integer coefficients, and a function with non-integral rational
coefficients can always be scaled up to have integer ones.

Our LLRF synthesis algorithm is based on repeatedly finding non-trivial quasi-
LRFs, and therefore we first focus on developing a complete algorithm for synthesizing
non-trivial quasi-LRFs. The next lemma explains how to represent the space S of all
quasi-LRFs, afterwards, we explain how to pick a non-trivial one, if possible, from this
space.

LEMMA 5.3. Given Q1, . . . ,Qk, it is possible to build, in polynomial time, a set of
inequalities S whose solutions define the coefficient vectors of all quasi-LRFs for the
corresponding transitions Q1 ∪ · · · ∪ Qk.

PROOF. Consider the constraints built by the Podelski-Rybalchenko procedure of
Theorem 4.20, and change (28e) to ~η · c′′ ≤ 0. Then, these constraints describe the
set of all quasi-LRFs for Q, rather than LRFs. Using the construction of Theorem 4.24,
with this change, we get a polyhedron S of dimension n′ = n+1+

∑k
i=1 2mi where mi is

the number of inequalities in Qi. Assume the first n+ 1 components correspond to the
coefficients (λ0, ~λ) (and the rest correspond to ~µ and ~η), then any point (λ0, ~λ, ~µ, ~η) ∈ S
defines a quasi-LRF ρ(x) = ~λ · x + λ0 for Q1 ∪ · · · ∪ Qk.

The next lemma explains how to pick a non-trivial quasi-LRF ρ, if any, from S.
Moreover, it shows how to pick one such that ∆ρ is strict for as many transitions
as possible, i.e., there is no other quasi-LRF ρ′, and valid transition x′′, such that
∆ρ′(x′′) > 0 and ∆ρ(x′′) = 0. We refer to such non-trivial quasi-LRFs as optimal. The
importance of this optimal choice is in that it leads to an algorithm that synthesizes
LLRFs of minimal dimension.
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LEMMA 5.4. There is a polynomial-time algorithm that finds a non-trivial quasi-
LRF ρ, if there is any, for Q1, . . . ,Qk; moreover, for any quasi-LRF ρ′, and valid transi-
tion x′′, ∆ρ(x′′) = 0⇒ ∆ρ′(x′′) = 0.

PROOF. The algorithm follows the following steps:

(a) Construct a polyhedron S of all quasi-LRFs as in Lemma 5.3;
(b) If S = ∅ return NONE, otherwise, pick (λ0, ~λ, ~µ, ~η) in the relative interior4 of S;
(c) If max{~λ · (x − x′) | x′′ ∈ Qi} > 0, for some 1 ≤ i ≤ k, return ρ(x) = ~λ · x + λ0,

otherwise return NONE.

When the above algorithm returns ρ 6= NONE, it is a non-trivial quasi-LRF since
it is a quasi-LRF , and the last step guarantees the existence of at least one x′′ for
which ∆ρ(x′′) > 0. To show completeness of the above algorithm and optimality of ρ,
it is enough to show that for any (λ′0,

~λ′, ~µ′, ~η′) ∈ S and z′′ ∈ Q1 ∪ · · · ∪ Qk, we have
~λ · (z− z′) = 0⇒ ~λ′ · (z− z′) = 0.

So, assume that ~λ · (z− z′) = 0. Define the hyperplane H = {(α0, ~α, ~β,~γ) ∈ Qn′ |
~α · (z − z′) = 0} where ~α is a vector of dimension n, and n′ is the dimension of S.
By assumption, (λ0, ~λ, ~µ, ~η) ∈ S ∩ H. Note that S ∩ H is a face of S. If it equals to S,
then (λ′0,

~λ′, ~µ′, ~η′) ∈ H and our claim holds. Otherwise, it is a proper face of S. Since
(λ0, ~λ, ~µ, ~η) was chosen from the relative interior of S, we have ~λ · (z− z′) > 0, and again
our claim holds.

To justify the polynomial-time complexity note that the first step is polynomial by
Lemma 5.3; the second step can be done in polynomial time [Schrijver 1986, Cor. 14.1g,
p. 185]; and the third is also polynomial since it consists of solving at most k LP prob-
lems over the rationals.

Next we observe that finding a non-trivial quasi-LRF for I(Q1)∪· · ·∪I(Qk), i.e., over
the integers, can be done by finding one for the corresponding integer hulls.

LEMMA 5.5. Function ρ a is non-trivial quasi-LRF for I(Q1) ∪ · · · ∪ I(Qk) if and
only if it is a non-trivial quasi-LRF for Q1I ∪ · · · ∪ QkI .

PROOF. (⇒) Suppose ρ is a non-trivial quasi-LRF for I(Q1)∪· · ·∪I(Qk). Then, since
I(Qi) ⊆ QiI , there is an integer point x′′ ∈ Q1I ∪ · · · ∪ QkI for which ∆ρ(x′′) > 0. It
remains to show that for any x′′ ∈ Q1I∪· · ·∪QkI we have ρ(x) ≥ 0 and ∆ρ(x′′) ≥ 0. This
follows from the fact that, by definition of integer polyhedra, any x′′ ∈ QiI is a convex
combination of some points from I(Qi). (⇐) Suppose ρ is a non-trivial quasi-LRF for
Q1I ∪· · ·∪QkI . Then, for any x′′ ∈ I(Q1)∪· · ·∪ I(Qk) we have ρ(x) ≥ 0 and ∆ρ(x′′) ≥ 0.
It remains to show that there is x′′ ∈ I(Q1) ∪ · · · ∪ I(Qk) for which ∆ρ(x′′) > 0. Let
x′′ ∈ QiI be a point for which ∆ρ(x′′) > 0, then, since x′′ is a convex combination of
some integer points from I(Qi), there must be an integer point z′′ ∈ I(Qi) for which
∆ρ(z′′) > 0.

Now we are in a position for describing our algorithm for synthesizing a LLRF ,
shown as the procedure LLRFint in Algorithm 1. It either returns a LLRF τ or NONE
if none exists. Let us first explain the recursive procedure LLRFSYN. It builds the LLRF
component by component, or more precisely, by finding a suitable first component and
calling itself recursively to find the rest. At Line 3 it finds a non-trivial quasi-LRF ρ
for the transitions P1 ∪ · · · ∪Pk. Assuming (as is always safe to do) that the coefficients
returned are integer, this ρ ranks all transitions for which ∆ρ(x′′) ≥ 1, while for other

4For definitions related to faces of polyhedra, and the relative interior, see Section 2.1.
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Algorithm 1: Synthesizing Lexicographical Linear Ranking Functions
LLRFint(〈Q1, . . . ,Qk〉)
Input: MLC loop defined by the polyhedra Q1, . . . ,Qk
Output: A LLRF for I(Q1), . . . , I(Qk), if exists, otherwise NONE
begin

1 Compute the integer hulls Q1I , . . . ,QkI
2 return LLRFSYN(〈Q1I , . . . ,QkI〉).

LLRFSYN(〈P1, . . . ,Pk〉)
Input: MLC loop defined by the polyhedra P1, . . . ,Pk
Output: A LLRF for P1, . . . ,Pk, if exists, otherwise NONE
begin

1 if 〈P1, . . . ,Pk〉 are all empty then return nil

3 else if P1 ∪ · · · ∪ Pk has a non-trivial quasi-LRF ρ then
4 ∀1 ≤ i ≤ k . P ′i := Pi ∧∆ρ(x′′) = 0
5 τ ← LLRFSYN(〈P ′1, . . . ,P ′k〉)
6 if τ 6= NONE then return ρ::τ

else return NONE

8 else return NONE

transitions, ∆ρ(x′′) = 0. The set of these transitions is computed at Line 4, and at
Line 5 LLRFSYN is recursively called in order to find a LLRF τ for them. If it finds
one, then it returns ρ::τ as a LLRF for P1 ∪ · · · ∪ Pk. The recursion stops when all
transitions are ranked (Line 2), or when there is no non-trivial quasi-LRF for the
current set of transitions (Line 4). An important property of this algorithm is that when
calling LLRFSYN with integral polyhedra, then the polyhedra passed to the recursive
call are also integral. This allows us to rely on Lemmas 5.4 and 5.5, which entail the
completeness of the overall algorithm. This also explains why it suffices to compute
the integer hulls once, at Line 1 of Procedure LLRFint.

Example 5.6. Let us demonstrate the algorithm on the SLC loop (12) of Exam-
ple 2.12, which is defined by

Q = {x1 ≥ 0, x2 ≥ 0, x3 ≥ −x1, x′2 = x2 − x1, x′3 = x3 + x1 − 2}.

First note that in this case QI = Q and thus we can skip Line 1 of Procedure LLRFint.
LLRFSYN is first called with Q, and then, at Line 3 it finds the non-trivial quasi-LRF
ρ1(x1, x2, x3) = x2 for Q, at Line 4 it sets P ′1 to Q ∧ x2 − x′2 = 0, and at Line 5 LLRFSYN
is called recursively with this P ′1. Then, at Line 3 it finds the non-trivial quasi-LRF
ρ2(x1, x2, x3) = x3 for Q∧x2−x′2 = 0, at Line 4 it sets P ′1 to Q∧x2−x′2 = 0∧x3−x′3 = 0
which is an empty polyhedron, and at Line 5 LLRFSYN is called recursively with an
empty polyhedron. Then, the check at Line 2 succeeds and it returns nil. Thus, the
final returned value is 〈x2, x3〉 which is a LLRF for I(Q1). Now suppose that we remove
x3 ≥ −x1 from Q, and note that we still have QI = Q. Calling LLRFSYN with this
modified Q would proceeds as above, however, it would fail to find a non-trivial quasi-
LRF for Q ∧ x2 − x′2 = 0 and thus it returns NONE. Indeed, in this case I(Q) does not
have a LLRF since the loop is non-terminating.

Before formally proving soundness and completeness of Algorithm 1, we state a fun-
damental observation that we will rely on.
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OBSERVATION 5.7. Let Q be a transition polyhedron. If ρ is a quasi-LRF for Q,
then the points where ∆ρ(x′′) = 0 holds, if any, form a face of Q.

PROOF. If there is x′′ ∈ Q such that ∆ρ(x′′) = 0, then min{∆ρ(x′′) | x′′ ∈ Q} = 0.
According to the definition of a face, the intersection of the hyperplane {x′′ ∈ Q2n |
∆ρ(x′′) = 0} with Q is a face of Q.

Note that the statement that ρ is non-trivial is equivalent to stating that the face,
above, is proper.

LEMMA 5.8. If LLRFint(〈Q1, . . . ,Qk〉) returns τ different from NONE, then τ is a
LLRF for I(Q1), . . . , I(Qk).

PROOF. We show that when P1, . . . ,Pk are integral, and LLRFSYN(〈P1, . . . ,Pk〉) re-
turns τ 6= NONE, then τ is a LLRF for I(P1), . . . , I(Pk). The conclusion of the lemma
then follows because LLRFint calls LLRFSYN with the integer polyhedra Q1I , . . . ,QkI .
The proof is by induction on

∑
dim(Pi).

Base-case. The base-case is when
∑

dim(Pi) = −k, i.e., all Pi are empty. In such case
the algorithm returns nil, which is trivially correct since there are no transitions.

Induction hypothesis. If
∑

dim(Pi) < j, each Pi is integral, and LLRFSYN(〈P1, . . . ,Pk〉)
returns τ , then τ is a LLRF for I(P1), . . . , I(Pk).

Induction step. Assume
∑

dim(Pi) = j, and that LLRFSYN(〈P1, . . . ,Pk〉) returns ρ::τ .
Namely, at Line 3 it finds ρ, and τ 6= NONE is the result of LLRFSYN(〈P ′1, . . . ,P ′k〉) at
Line 5. We show that ρ::τ is a LLRF for I(P1), . . . , I(Pk). First note the following:

(1) Each P ′i is integral. This is because it is either empty, or a face of Pi (by Lemma 5.7),
and all faces of an integral polyhedron are integral.

(2)
∑

dim(P ′i) <
∑

dim(Pi) = j. This is because (i) ∀1 ≤ i ≤ k . dim(P ′i) ≤ dim(Pi); and
(ii) there is x′′ ∈ Pi, for some i, such that ∆ρ(x′′) > 0, and thus P ′i is either empty or
a proper face of Pi (by Lemma 5.7), in both cases dim(P ′i) < dim(Pi).

(3) We may assume that the function ρ has been scaled, if necessary, so that for any
x′′ ∈ I(P1)∪· · ·∪I(Pk), either ∆ρ(x′′) = 0 and x′′ ∈ I(P ′1)∪· · ·∪I(P ′k), or ∆ρ(x′′) ≥ 1.

Using (1,2), we apply the induction hypothesis and conclude that τ is a LLRF for
I(P ′1), . . . , I(P ′k). Using (3) we conclude that ρ::τ is still a LLRF for I(P ′1), . . . , I(P ′k),
and that ρ ranks all transitions of I(P1)∪ · · · ∪ I(Pk) that are not in I(P ′1)∪ · · · ∪ I(P ′k).
Thus, ρ::τ is a LLRF for I(P1), . . . , I(Pk).

Lemma 5.8 proves that Algorithm 1 is a sound procedure for LEXLINRF(Z). In The-
orem 5.11 below we combine this with a completeness proof. First, we give sufficient
and necessary conditions for the existence of a LLRF for I(Q1), . . . , I(Qk).

OBSERVATION 5.9. If there is a LLRF for I(Q1), . . . , I(Qk), then every set of transi-
tions T ⊆ I(Q1) ∪ · · · ∪ I(Qk) has a non-trivial quasi-LRF .

PROOF. Let τ = 〈ρ1, . . . , ρd〉 be a LLRF for I(Q1), . . . , I(Qk), and T be a set of tran-
sitions. Define I = {i | x′′ ∈ T is ranked by ρi}, and let j = min(I). Then, from Defini-
tion 2.11, it is easy to verify that ρj is a non-trivial quasi-LRF for T .

OBSERVATION 5.10. If every set of transitions T ⊆ I(Q1) ∪ · · · ∪ I(Qk) has a non-
trivial quasi-LRF , then there is a LLRF for I(Q1), . . . , I(Qk).

PROOF. In such case, Algorithm 1, will find a LLRF . This is because in every call to
LLRFSYN, P1, . . . ,Pk are integral, and thus, by Lemmas 5.4 and 5.5 the check at Line 3
of LLRFSYN is complete. Moreover, the algorithm terminates since

∑
dim(Pi) decreases

in each recursive call and has a lower bound −k.
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THEOREM 5.11. Algorithm 1 is sound and complete for LEXLINRF(Z). Moreover,
when it finds a LLRF , it finds one of a minimal dimension.

PROOF. If the algorithm returns τ = 〈ρ1, . . . , ρd〉, then, by Lemma 5.8, it is a LLRF .
If it is returns NONE, then it has found a subset of integer points (at Line 3 of LLRFSYN)
that does not have a non-trivial quasi-LRF . In this case, by Observation 5.9, there is
no LLRF . Thus, soundness and completeness have been established.

The minimality of the dimension stems from the fact that our algorithm is greedy,
i.e., in each step finds (by Lemma 5.4) a LLRF that ranks as many transitions as
possible. Assume there is another LLRF τ ′ = 〈ρ′1, . . . , ρ′d′〉. We show by induction that
the set of transitions that are not ranked by 〈ρ1, . . . , ρi〉, call it Ui, is contained in the
set of transitions not ranked by 〈ρ′1, . . . , ρ′i〉, call them U ′i . Observe that since LLRFSYN
returns immediately if the input polyhedra are empty, we must have Ui 6= ∅ for i ≤ d.
It follows that U ′i 6= ∅ for i ≤ d, hence d′ ≥ d.

The claim holds by definition for i = 0 since U0 = U ′0 = I(Q1) ∪ · · · ∪ I(Q1). Assume
Ui ⊆ U ′i for some 0 ≤ i < d′, we show that Ui+1 ⊆ U ′i+1. Since Ui ⊆ U ′i then ρ′i+1 is a
quasi-LRF for Ui, and since ρi+1 is optimal for Ui, by Lemma 5.4, it cannot be that ρ′i+1
ranks a transition from Ui that is not ranked by ρi+1, thus Ui+1 ⊆ U ′i+1.

The next corollary bounds the dimension of the LLRF inferred by LLRFSYN in terms
of n, the number of variables in the loop.

COROLLARY 5.12. If LLRFSYN returns τ = 〈ρ1, . . . , ρd〉, then d ≤ n.

PROOF. Let ~λi be the coefficients of ρi (i.e., we ignore the constant λ0); for 1 ≤ i ≤ d.
We claim that the vectors ~λi must be linearly independent. Assume the contrary; let i
be the first index such that ~λi = c1 · ~λ1 + · · · + ci−1 · ~λi−1. Pick a transition x′′ that is
ranked by ρi, i.e., ∆ρi(x

′′) = ~λi · (x−x′) > 0 and ∀1 ≤ j < i . ∆ρj(x
′′) = ~λj · (x−x′) = 0.

Then

∆ρi(x
′′) = ~λi · (x− x′) = (

i−1∑
j=1

cj · ~λj) · (x− x′) =

i−1∑
j=1

cj · ~λj · (x− x′) = 0 (32)

which contradicts the assumption that ∆ρi(x
′′) > 0. Now since each ~λi is a vector in

Qn, linear independence implies d ≤ n.

The above Lemma provides the best bound possible for MLC loops. To see this, con-
sider the MLC loop (3) of Section 1, for which n = 2, and note that it has a LLRF with
d = 2, namely 〈x1, x2〉, but no LLRF with d = 1 (since it does not have a LRF ). This can
easily be extended to provide an example for any n.

Next, we argue that Procedure LLRFSYN can be implemented in polynomial time.
Note that this does not mean that LEXLINRF(Z) is PTIME-decidable since Algo-
rithm 1 has to compute the integer hulls first, which may take exponential time. How-
ever, this does mean that in certain special cases, LEXLINRF(Z) is PTIME-decidable.

LEMMA 5.13. Procedure LLRFSYN can be implemented in polynomial time.

PROOF. First note that by Corollary 5.12 the recursion depth is bounded by n + 1,
and that lines 2 and 3 can be performed in polynomial time in the bit-size of (the cur-
rent) P1, . . . ,Pn. However, we cannot immediately conclude that the overall runtime
is polynomial since as recursion progresses, the procedure operates on polyhedra ob-
tained by adding additional constraints (at Line 4), that could get bigger and bigger
in their bit-size. Thus, to complete the proof, we need to ensure that the bit-size of
P1, . . . ,Pn, at any stage of the recursion, is polynomial in the bit-size of the original
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ones. Next we show how Line 4 can be implemented to ensure this, exploiting the fact
that when Pi ∧∆ρ(x′′) = 0 is not empty, it is a face of Pi.

Recall that any face of Pi can be obtained by changing some of its inequalities to
equalities. Hence, instead of adding ∆ρ(x′′) = 0 to Pi at Line 4, we can identify those
inequalities of Pi that should be turned into equalities to get Pi ∧∆ρ(x′′) = 0. Chang-
ing these inequalities to equalities ensures that the bit-size of Pi, at any stage of the
recursion, is at most twice its original bit-size. Finding these inequalities can be done
as follows: for each inequality a · x ≤ b of Pi, we check if Pi ∧ ∆ρ(x′′) = 0 ⇒ a · x ≥ b
holds, if so, then this inequality should be turned to equality. This check can be done
in polynomial time since it is an LP problem and the bit-size of ρ is polynomial in the
bit-size of P1, . . . ,Pn.

The above lemma implies that, as for LINRF(Z), if it is guaranteed that the transi-
tion polyhedra are integral, or their integer hull can be computed in polynomial time,
then the LEXLINRF(Z) problem can be solved in polynomial time.

THEOREM 5.14. The LEXLINRF(Z) problem for MLC loops is PTIME-decidable if
each path corresponds to one of the special cases discussed in sections 4.1 and 4.2.

PROOF. For those special cases either we do not compute the integer hulls since
they are already integral, or we compute them in polynomial time. Then Algorithm 1
becomes polynomial-time since Line 1 of LLRFint can be done in polynomial time, and
LLRFSYN is polynomial according to Lemma 5.13.

It may be worthwhile to point out that even if we do not have a PTIME-decidable
case, we can always apply Procedure LLRFSYN to the given polyhedra—if it produces a
LLRF , we have a sound result in polynomial time.

5.2. Complexity of LEXLINRF(Z)
In this section we show that the LEXLINRF(Z) problem, in the general case, is coNP-
complete. First, coNP-hardness follows from the coNP-hardness of LINRF(Z) as in
Theorem 3.1. This is because the construction in Theorem 3.1 either produces a loop
that has a LRF (which is also a LLRF ) or else it is non-terminating (so it does not have
any kind of ranking function). For the inclusion in coNP, we show that the complement
problem, i.e., the nonexistence of a LLRF , has a polynomially checkable witness.

COROLLARY 5.15. There is no LLRF for I(Q1), . . . , I(Qk), if and only if there is
T ⊆ I(Q1) ∪ · · · ∪ I(Qk) for which there is no non-trivial quasi-LRF .

PROOF. Immediate from Observations 5.9 and 5.10.

The above observation suggests that such T can be used as a witness, however, T
might include infinite number of transitions, and thus it does not immediately meet
our needs (polynomially checkable witness).

Example 5.16. We show a case in which T must consist of infinitely many points.
Let Q = {x′ ≤ x − 1} and take an arbitrary finite T ⊆ Q. Now define λ0 = min{x |
(x, x′) ∈ T}, then ρ(x) = x − λ0 is a non-trivial quasi-LRF (actually LRF ) for T and
thus T does not prove that there is no quasi-LRF for Q. Any set of transitions out of Q
that does not have a quasi-LRF must be infinite.

To overcome this finiteness problem, we use notions similar to the witness and h-
witness that we have used for the case of LINRF(Z). In particular, we show that the
existence of T as in Corollary 5.15 can be witnessed by finite setsX ⊆ I(Q1)∪· · ·∪I(Qk)
and Y ⊆ I(RQ1

) ∪ · · · ∪ I(RQk
), whose bit-size is bounded polynomially in the bit-size

of the input.
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Definition 5.17. Let X = X1∪· · ·∪Xk and Y = Y1∪· · ·∪Yk, such that (i) Xi ⊆ I(Qi);
(ii) Yi ⊆ I(RQi); and (iii) Yi 6= ∅ ⇒ Xi 6= ∅. We say that X and Y form a witness against
the existence of a LLRF for I(Q1), . . . , I(Qk), if the following set of linear constraints,
denoted by Φ(X,Y ), has no solution

~λ·x + λ0 ≥ 0 for all x′′ ∈ X (33a)
~λ·y ≥ 0 for all y′′ ∈ Y (33b)

~λ · (x− x′) ≥ 0 for all x′′ ∈ X (33c)
~λ · (y − y′) ≥ 0 for all y′′ ∈ Y (33d)∑

x′′∈X

~λ · (x− x′) +
∑

y′′∈Y

~λ · (y − y′) ≥ 1 (33e)

LEMMA 5.18. Let X = X1 ∪ · · · ∪Xk and Y = Y1 ∪ · · · ∪ Yk be as in Definition 5.17.
Then there is T ⊆ I(Q1) ∪ · · · ∪ I(Qk) that has no non-trivial quasi-LRF .

PROOF. We construct such T . First note that for x′′ ∈ Xi and y′′ ∈ Yi, the point
x′′ + ay′′, for any integer a ≥ 0, is a transition in I(Qi). Now define

T = {x′′ + ay′′ | x′′ ∈ Xi,y
′′ ∈ Yi, integer a ≥ 0 } .

Clearly T ⊆ I(Q1)∪· · ·∪ I(Qk). We claim that T has no non-trivial quasi-LRF . Assume
the contrary, i.e., there is (λ0,~λ) ∈ Qn+1 such that ρ(x) = ~λ·x + λ0 is a non-trivial
quasi-LRF for T . We show that (cλ0,c~λ), for some c > 0, is a solution of Φ(X,Y ), which
contradicts the assumption that X and Y form a witness as in Definition 5.17.

We first show that (33a–33d) of Φ(X,Y ) hold for (cλ0,c~λ) with any c > 0. Pick arbi-
trary x′′ ∈ Xi and y′′ ∈ Yi. Since ρ is a non-trivial quasi-LRF for T , inequalities (30,31)
on Page 28 must hold for x′′+ ay′′ =

( x+ay
x′+ay′

)
∈ T . Namely, the following must hold for

any integer a ≥ 0

ρ(x + ay)=~λ·(x + ay) + λ0=~λ·x + λ0 + a~λ·y ≥ 0 (34)

∆ρ(x′′ + ay′′)=~λ·(x + ay)− ~λ·(x′ + ay′)=~λ·(x− x′) + a~λ·(y − y′) ≥ 0 (35)
This implies

(i) ~λ·x + λ0 ≥ 0, otherwise (34) is false for a = 0;
(ii) ~λ·y ≥ 0, otherwise (34) is false for a > −(~λ·x + λ0)/(~λ·y);

(iii) ~λ · (x− x′) ≥ 0, otherwise (35) is false for a = 0; and
(iv) ~λ · (y − y′) ≥ 0, otherwise (35) is false for a > −~λ · (x− x′)/~λ · (y − y′).

Note that the inequalities in (i–iv) above are those used in (33a–33d). Hence (33a–33d)
hold for (λ0,~λ), and clearly, also for (cλ0,c~λ) with any c > 0.

Now we show that (33e) of Φ(X,Y ) holds for (cλ0,c~λ), for some c > 0. Since ρ is a
non-trivial quasi-LRF , then, inequality (31) must be strict for at least one x′′ + ay′′ =( x +ay
x′+ay′

)
∈ T , i.e., ∆ρ(x′′ + ay′′) = ~λ · (x − x′) + a~λ · (y − y′) > 0. This means that

either ~λ · (x − x′) > 0 or ~λ · (y − y′) > 0 must hold. Taking c > 0 large enough, we
have c~λ · (x − x′) ≥ 1 or c~λ · (y − y′) ≥ 1. Thus, inequality (33e) holds for (cλ0,c~λ).
Since (33a–33d) also hold for this (cλ0,c~λ), it is a solution of Φ(X,Y ).

LEMMA 5.19. If there is T ⊆ I(Q1)∪ · · · ∪ I(Qk) that has no non-trivial quasi-LRF ,
then there are finite sets X = X1∪· · ·∪Xk and Y = Y1∪· · ·∪Yk, fulfilling the conditions
of Definition 5.17.
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PROOF. Let x′′ be an arbitrary member of T . Let Q ∈ {Q1, . . . ,Qk} so that x′′ ∈ Q,
and consider the generator representation

QI = convhull{x′′1 , . . . ,x′′m}+ cone{y′′1 , . . . ,y′′t } .

Using these representation, we have x′′ =
∑m
i=1 aix

′′
i +

∑t
j=1 bjy

′′
j for some rationals

ai, bj ≥ 0, and
∑
i ai = 1. We let ver(x′′) be the set of all vertices x′′i with ai > 0 and

rays(x′′) be the set of all rays y′′j with bj > 0.
For ` = 1, . . . , k, define X` = ∪{ver(x′′) | x′′ ∈ T ∩ I(Q`)} and Y` = ∪{rays(x′′) | x′′ ∈

T ∩ I(Q`)}. Next we show that X = X1 ∪ · · · ∪Xk and Y = Y1 ∪ · · · ∪ Yk form a witness
as in Definition 5.17.

Conditions (i,ii) of Definition 5.17 hold by construction, and Condition (iii) holds
because

∑
i ai = 1. What is left to show is that Φ(X,Y ) has no solution. Assume the

contrary, i.e., Φ(X,Y ) has a solution (λ0,~λ) ∈ Qn+1. We claim that then ρ(x) = ~λ·x + λ0
is a non-trivial quasi-LRF for T , which contradicts the lemma’s assumption. Pick an
arbitrary x′′ ∈ T and write it, using the corresponding X` and Y`, as x′′ =

∑m
i=1 aix

′′
i +∑t

j=1 bjy
′′
j where ai, bj > 0 and

∑m
i=1 ai = 1. Since (33a,33c) hold for each x′′i ∈ X

and (33b,33d) hold for each y′′j ∈ Y , we have

ρ(x) =~λ · (
m∑
i=1

aixi +

t∑
j=1

bjyj) + λ0

=

m∑
i=1

ai · (~λ·xi + λ0) +

t∑
j=1

bj~λ·yj ≥ 0

∆ρ(x′′) =~λ · (
m∑
i=1

aixi +

t∑
j=1

bjyj)− ~λ · (
m∑
i=1

aix
′
i +

t∑
j=1

bjy
′
j)

=

m∑
i=1

ai~λ · (xi − x′i) +

t∑
j=1

bj~λ · (yj − y′j) ≥ 0

Thus, ρ satisfies (30,31) for any x′′ ∈ T . Now since (33e) holds, there must be x′′i ∈ X
or y′′j ∈ Y for which ~λ · (xi − x′i) > 0 or ~λ · (yj − y′j) > 0. Now note that since X and
Y were constructed from the vertices and rays of the transitions in T , these x′′i or y′′j
must correspond to some x′′ ∈ T , and thus it must be the case that ∆ρ(x′′) > 0 for this
specific x′′, i.e., inequality (31) is strict for x′′.

Example 5.20. For Q = {x′ ≤ x− 1} of Example 5.16, we claim that X = {(0,−1)}
and Y = {(1, 1), (−1,−1)} form a witness as in Definition 5.17. It is easy to check
that X and Y satisfy conditions (i–iii). Then, Φ(X,Y ) is the set of inequalities
{λ0 ≥ 0, λ1 ≥ 0, −λ1 ≥ 0, λ1 ≥ 1} which has no solution.

Example 5.21. Consider an MLC loop represented by

Q1 = {x1 ≥ 0, x2 ≥ 0, x′1 = x1 − 1}
Q2 = {x1 ≥ 0, x2 ≥ 0, x′2 = x2 − 1}

and let
X1 = {(0, 0,−1, 0)}, Y1 = {(0, 0, 0, 1)},
X2 = {(0, 0, 0,−1)}, Y2 = {(0, 0, 1, 0)}.
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We claim that these sets form a witness as in Definition 5.17. It is easy to check that
they satisfy conditions (i–iii) of Definition 5.17. Substituting these points in (33e) gives
0 ≥ 1, so clearly (33a–33e) are unsatisfiable.

The next lemma concerns the bit-size of the witness.

LEMMA 5.22. If there is a finite witness for the nonexistence of LLRF for
I(Q1), . . . , I(Qk), then there is one defined by X = X1∪· · ·∪Xk and Y = Y1∪· · ·∪Yk such
that

∑k
i=1 |Xi|+ |Yi| ≤ 6n+ 2; and its bit-size is polynomial in the bit-size of Q1, . . . ,Qk.

PROOF. Consider the witness constructed in Lemma 5.19, and recall that Φ1 =
Φ(X,Y ) has no solution. Let Z be any maximal linearly-independent subset of X ∪ Y .
Clearly, |Z| ≤ 2n. Let Φ2 be the formula obtained from Φ1 by replacing (33e) with∑

z′′∈Z

~λ · (z− z′) ≥ 1 (36)

We claim that Φ2 has no solution. To see this, take arbitrary (λ0,~λ) ∈ Q2n, we know it is
not a solution of Φ1. If this is because one of the inequalities in (33a-33d) is false, then
it is clearly not a solution of Φ2 since it includes all such inequalities. If all inequalities
in (33a-33d) are true, then (33e) must be false. Since all terms in the sum are non-
negative, they must all be zero, that is, ~λ · (z − z′) = 0 for any z′′ ∈ X ∪ Y . Otherwise,
(cλ0, ~cλ) for c ≥ 1 large enough would be a solution of Φ1. Thus, inequality (36) is false.

A corollary of Farkas’ Lemma [Schrijver 1986, p. 94] states that: if a set of inequal-
ities over Qd has no solution, there is a subset of at most d + 1 inequalities that has
no solution. Let Φ3 be such a subset of Φ2, it has at most n + 2 inequalities (since Φ2

is over Qn+1). Note that Φ3 must include inequality (36), otherwise it is trivially satis-
fiable. Let X ′ = X ′1 ∪ . . . ∪ X ′k ⊆ X and Y ′ = Y ′1 ∪ . . . ∪ Y ′k ⊆ Y be the points involved
in the inequalities of Φ3 (including (36)), then

∑k
i=1 |X ′i| + |Y ′i | ≤ n + 1 + 2n = 3n + 1.

To get a witness as per Definition 5.17, if, for any i ≤ k, Y ′i 6= ∅ and X ′i = ∅, we include
an arbitrary point x′′ ∈ Xi to X ′i. This can at most double the size of these sets, i.e.,∑k
i=1 |X ′i|+ |Y ′i | ≤ 6n+ 2 (or

∑k
i=1 |X ′i|+ |Y ′i | ≤ 3n+ 1 + k when k < 3n+ 1).

We claim that 〈X ′, Y ′〉 is a witness that fulfills the conditions of Definition 5.17. It
satisfies conditions (i-iii) by construction. Next, we show that Φ4 = Φ(X ′, Y ′) has no
solution. Take arbitrary (λ0,~λ) ∈ Qn+1, we know it is not a solution for Φ2. If it is
because one of the inequalities in (33a-33d) is false, then it is clearly not a solution
of Φ4 since it includes all such inequalities. If all inequalities in (33a-33d) are true,
then (36) must be false, and then we must have ~λ · (z − z′) = 0 for any z′′ ∈ Z. Now
since any z′′ ∈ X ′ ∪ Y ′ is a linear combination of points from Z, ~λ · (x− x′) = 0 for any
x′′ ∈ X ′ and ~λ · (y − y′) = 0 for any y′′ ∈ Y ′. Thus, inequality (33e) of Φ4 is false.

Finally, we show that the bit-size of the witness is polynomial in the bit-size of the
input. Recall that the points of X ′ and Y ′ come from the generator representations
of Q1I , . . . ,QkI , and that there is a generator representation for each QiI in which
each vertex/ray can fit in ‖QiI‖v bits. Thus, the bit-size of X ′ and Y ′ is bounded by
(6n+ 2) ·maxi ‖QiI‖v. By Theorem 2.8, since the dimension of each Qi is 2n,

(6n+ 2) ·max
i
‖QiI‖v ≤ (6n+ 2) · (6 · (2n)3 ·max

i
‖Qi‖f ) ≤ (288n4 + 96n3) ·max

i
‖Qi‖b

which is polynomial in the bit-size of the input.

THEOREM 5.23. LEXLINRF(Z) ∈ coNP for MLC loops.

PROOF. We show that the complement of LINRF(Z) has a polynomially checkable
witness. The witness is a listing of sets of integer points X = X1 ∪ · · · ∪ Xk and Y =
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Y1 ∪ · · · ∪ Yk of at most 6n + 2 elements and has a polynomial bit-size (specifically, a
bit-size bounded as in Lemma 5.22). Verifying a witness consists of the following steps:

Step 1. Verify that each x′′ ∈ Xi is in I(Qi), which can be done by verifying A′′i x′′ ≤
c′′i ; and that each y′′ ∈ Yi is in I(RQ), which can be done by verifying A′′i y′′ ≤ 0. This
is done in polynomial time. Note that according to Lemma 5.18 it is not necessary to
check that X and Y come from a particular generator representation.

Step 2. Verify that Φ(X,Y ) has no solutions, which can be done in polynomial time
since it is an LP problem over Qn+1.

5.3. Lexicographic Ranking Functions over the Rationals
In this section we address the LEXLINRF(Q) problem. In particular, we show that
Procedure LLRFSYN, when applied to the input polyhedra Q1, . . . ,Qk instead of their
integer hulls, can be used to decide the existence of a LLRF for Q1, . . . ,Qk. However,
in such case, the returned value τ = 〈ρ1, . . . , ρd〉 of the algorithm does not fit in the
class of LLRFs as in Definition 2.11. We define a new class of LLRFs that captures
such functions, and prove that it is actually equivalent to that of Definition 2.11 as far
as the existence of a LLRF is concerned.

First recall that in Section 2.4 we discussed the possibility of replacing inequality
∆ρi(x

′′) ≥ 1 by ∆ρi(x
′′) ≥ δi in condition (11) of Definition 2.11. With this change,

τ = 〈ρ1, . . . , ρd〉 is a LLRF if and only if there are positive δ1, . . . , δd such that, for any
x′′ ∈ Q1 ∪ · · · ∪ Qk there exists i for which the following hold

∀j < i . ∆ρj(x
′′) ≥ 0 (37)

∀j ≤ i . ρj(x) ≥ 0 (38)
∆ρi(x

′′) ≥ δi (39)

This is equivalent to Definition 2.11, as far as the existence of a LLRF is concerned,
since cτ , for any c > min(δi)

−1, is a corresponding LLRF as in Definition 2.11. In the
rest of this section, for the sake of simplifying the formal presentation, we use this
notion of LLRFs.

Let us start by explaining why the returned value of Procedure LLRFSYN, in the
rational case, does not fit in the above class of LLRFs. For this, let us consider a
non-trivial quasi-LRF ρ synthesized at Line 3. In the integer case, all integer tran-
sitions of P1, . . . ,Pk that do not pass to P ′1, . . . ,P ′k are ranked by this ρ. This is because
∆ρ(x′′) ≥ 1 for all such transitions (see the proof of Lemma 5.8, point (3)). This, how-
ever, is not true when considering rational transitions. In this case, all transitions that
do not pass to P ′1, . . . ,P ′k satisfy ∆ρ(x′′) > 0, but it is not guaranteed that ∆ρ(x′′) has
a minimum δ over this set of transitions. For example, take P1 = {x ≥ 0, x = 2x′} and
ρ(x) = x, then P ′1 = {x = 0, x′ = 0}. The transitions that do not pass to P ′1 are those
specified by the non-closed polyhedron {x > 0, x = 2x′}, in which ∆ρ does not have a
positive lower bound. This leads us to introduce weak LLRFs.

Definition 5.24. We say that τ = 〈ρ1, . . . , ρd〉 is a weak LLRF for Q1 ∪ · · · ∪ Qk, if
and only if for any x′′ ∈ Q1 ∪ · · · ∪ Qk there exists i for which (37,38) hold, as well as

∆ρi(x
′′) > 0 (40)

(which replaces (39)).

While any LLRF is a also weak LLRF , the converse is more subtle. Over the inte-
gers, the existence of a weak LLRF implies the existence of a LLRF (since ∆ρi(x

′′) > 0
means ∆ρi(x

′′) ≥ 1 when the coefficients and state variables are integer). Over the ra-
tionals, such an implication is not immediate. Moreover, even whether a weak ranking
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function implies termination is unclear, as infinitely descending sequences of positive
rationals exist.

Example 5.25. Consider the following MLC loop

loop : {x1 ≥ 0, x′1 = x1 − 1}
∨ {x1 ≥ 0, x2 − x1 ≥ 0, x′1 = x1, x′2 = x2 − 1}
∨ {x1 ≥ 0, x2 − x1 ≥ 0, x3 ≥ 0, x′1 ≤ 1

2x1, x′2 = x2, x′3 = x3 − 1}
(41)

Applying Procedure LLRFSYN to the corresponding transition polyhedra Q1,Q2,Q3 pos-
sibly returns τ = 〈x1, x2 − x1, x3〉. It is easy to see that it is a weak LLRF over the
rationals, and, consequently, it is a LLRF over the integers. To see why it is not a
LLRF over the rationals, assume the first component of τ decreases by at least δ1 > 0.
All transitions for which x1 − x′1 < δ1 are not ranked by this component and thus
should be ranked by either the second or the third. Let us take x′′ ∈ Q3 such that
x = (δ1, 1, 1) and x′ = ( 1

2δ1, 1, 0). This transition is not ranked by the first compo-
nent since ∆ρ1(x′′) = 1

2δ1 < δ1, and it is not ranked by the second or the third since
∆ρ2(x′′) = − 1

2δ1 < 0. Nonetheless, this loop is terminating over the rationals and has
a LLRF , and later we show how to obtain it.

Over the rationals, Procedure LLRFSYN is sound and complete for synthesizing weak
LLRFs. Moreover, as in the integer case, it synthesizes one with minimal dimension.

LEMMA 5.26. Procedure LLRFSYN, when applied to Q1, · · · ,Qk, is sound and com-
plete for the existence of a weak LLRF forQ1, . . . ,Qk. Moreover, if LLRFSYN(〈Q1, . . . ,Qk〉)
returns τ different from NONE, then τ is a weak LLRF of minimal dimension for
Q1, . . . ,Qk.

PROOF. Suppose that LLRFSYN(〈Q1, . . . ,Qk〉) returns τ . Then, as in the proof of
Lemma 5.8, we can show that τ is a weak LLRF . We prefer not to repeat the whole
proof but just indicate the difference, which boils down to drop points (1) and (3) re-
garding the integrality of corresponding polyhedra and a non-zero decrease being at
least 1.

This gives soundness; for completeness, the proof is as that of Theorem 5.11. In fact,
the sufficient and necessary condition for the existence of a LLRF , stated in Obser-
vations 5.9 and 5.10, is a condition for existence of a weak LLRF when applied to
Q1, . . . ,Qk.

The minimality follows from the same consideration as in the proof of Theo-
rem 5.11.

In the rest of this section we show how one can construct a LLRF for Q1, . . . ,Qk
from a weak LLRF . This implies soundness and completeness of Procedure LLRFSYN
as a decision procedure for LEXLINRF(Q), and its usage for synthesis of LLRFs. To
simplify notation, we shall consider the polyhedra Q1, . . . ,Qk to be fixed up to the
completion of the proof.

Here is a brief outline of the construction. The first step, culminating in Lemma 5.29,
shows how to transform the LLRF 〈ρ1, . . . , ρd〉 into another one 〈f1, . . . , fd〉, where each
fi will be a linear combination of ρ’s, so that if component i is used for ranking some
transition of one of the transition polyhedron Q`, we will be ensured that fi is non-
decreasing over all of this Q` (even over transitions that are already ranked by a
previous component). Consequently, in Lemmas 5.32 and 5.33, we show how thanks
to this property, the ranking-function components can be “nudged” so that the weak
LLRF becomes a proper one.
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Definition 5.27. Let τ = 〈ρ1, . . . , ρd〉 be a weak LLRF for Q1, . . . ,Qk. The ranking
chain for τ is the (d+ 1)-tuple of sets, U1, . . . , Ud+1, defined by U1 = Q1 ∪ · · · ∪ Qk, and
Ui+1 = Ui ∧ (∆ρi(x

′′) = 0).

Observe that

Q1 ∪ · · · ∪ Qk = U1 ⊇ U2 ⊇ · · · ⊇ Ud ⊇ Ud+1 = ∅.
It is easy to see that if for some j, Uj = Uj+1, it is possible to omit ρj from τ without
any harm. We say that τ is irredundant if

Q1 ∪ · · · ∪ Qk = U1 ⊃ U2 ⊃ · · · ⊃ Ud ⊃ Ud+1 = ∅. (42)

OBSERVATION 5.28. A weak LLRF computed by Procedure LLRFSYN is irredundant.
In fact, Ui is the union P1 ∪ · · · ∪ Pk of the arguments to the i-th recursive call.

By the definition of a weak LLRF , and the definition of U1, . . . , Ud+1, the following
properties clearly follow:

∀x′′ ∈ Ui . ρi(x) ≥ 0, (43i)
∀x′′ ∈ Ui \ Ui+1 . ∆ρi(x

′′) > 0, (44i)
∀x′′ ∈ Ui+1 . ∆ρi(x

′′) = 0 . (45i)

Note that each Ui is a finite union of closed polyhedra, obtained by intersecting U1 with
some hyperplanes. For 1 ≤ i ≤ d, let Ji = {j | Qj ∩ Ui 6= ∅}, and let U i =

⋃
j∈Ji Qj .

This means that if Ui includes a point from Qj , then U i includes all points of Qj . Note
that U i ⊇ U i+1. The next lemma shows that one can construct, for each Ui, a function
fi such that the domain on which (44i) holds is extended to U i \ Ui+1. These functions
are later used in constructing a LLRF for Q1, . . . ,Qk.

LEMMA 5.29. Given an irredundant weak LLRF , τ , and its ranking chain {Ui}, one
can construct, for each 1 ≤ i ≤ d, an affine function fi : Qn → Q such that

∀x′′ ∈ Ui . fi(x) ≥ ρi(x) ≥ 0 (46i)

∀x′′ ∈ U i \ Ui+1 . ∆fi(x
′′) > 0 (47i)

∀x′′ ∈ Ui+1 . ∆fi(x
′′) = 0 . (48i)

PROOF. The proof proceeds by induction.

Base-case. For the base-case we take i = 1, and define f1(x) = ρ1(x). Since U1 = U1,
(461–481) hold (they are equivalent to (431–451) in this case).

Induction hypothesis. Let 1 ≤ i < d, and assume that f1, . . . , fi have been defined. In
particular, fi satisfies (46i–48i). Only fi is used in the induction step below.

Induction step. We show that fi+1(x) = ρi+1(x) + (ξ + 1)·fi(x), for some ξ ≥ 0, satis-
fies (46i+1–48i+1). Most of the proof deals with finding ξ and constructing some related
properties. Consider x′′ ∈ U i+1. If x′′ ∈ Ui+1 then by (48i) we have ∆fi(x

′′) = 0, and if
x′′ 6∈ Ui+1 then x′′ ∈ U i+1 \ Ui+1 ⊆ U i \ Ui+1 and by (47i) we have ∆fi(x

′′) > 0. This
means that the conjunction x′′ ∈ U i+1 ∧∆fi(x

′′) ≤ 0 refers only to the points of Ui+1,
and such points, by (44i+1,45i+1), satisfy ∆ρi+1(x′′) ≥ 0. Thus, we get

x′′ ∈ U i+1 ∧∆fi(x
′′) ≤ 0⇒ ∆ρi+1(x′′) ≥ 0 . (49)
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Take j ∈ Ji+1, since Qj ⊆ U i+1, (49) still holds when replacing U i+1 by Qj
x′′ ∈ Qj ∧∆fi(x

′′) ≤ 0⇒ ∆ρi+1(x′′) ≥ 0 . (50)

Note that (50) has a non-vacant antecedent since Ui+1 ∩ Qj 6= ∅ by definition of Ji+1,
this allows using Farkas’ lemma below. Let ρi+1(x) = ~a·x + a0 and fi(x) = ~b·x + b0,
where ~a and ~b are row vectors of n elements each. Recall that Qj is given as a system
of inequalities A′′jx′′ ≤ c′′j , where A′′j is a matrix of dimension m × 2n. Using these
representations for ρi+1, fi, and Qj we can present (50) as follows:(

A′′j
~b, −~b

)
· x′′ ≤

(
c′′j
0

)
(−~a, ~a) · x′′ ≤ 0

Farkas’ Lemma guarantees the existence of a vector ~µj = (µj1, . . . , µjm) ≥ 0, and a
scalar ξj ≥ 0, such that

−~µj ·A′′j + ξj ·
(
−~b, ~b

)
= (~a, −~a) , (51)

~µj · c′′j ≤ 0. (52)

This means that (
~a+ ξj ·~b, −(~a+ ξj ·~b)

)
= −~µj ·A′′j . (53)

Now since the entries of ~µj are non-negative, fromA′′jx
′′ ≤ c′′j we get ~µj ·A′′jx′′ ≤ ~µj ·c′′j ≤

0. By (53),

−~µj ·A′′jx′′ =
(
~a+ ξj ·~b, −(~a+ ξj ·~b)

)
· x′′ = (~a+ ξj ·~b) · (x− x′),

so we get

∀x′′ ∈ Qj . (~a+ ξj ·~b) · (x− x′) ≥ 0. (54)

Note that ξj ·~b · (x − x′) = ξj ·∆fi(x′′), and that by (47i,48i) we have ∆fi(x
′′) ≥ 0 over

U i, and thus over Qj ⊆ U i+1 ⊆ U i. This means that (54) still holds when replacing ξj
by any ξ ≥ ξj . Now define ξ = max{ξj | j ∈ Ji+1}, then (54) holds for any j ∈ Ji+1 and
this ξ. Since U i+1 =

⋃
j∈Ji+1

Qj , we get

∀x′′ ∈ U i+1 . (~a+ ξ·~b) · (x− x′) ≥ 0 . (55)

Now we show that fi+1(x) = ρi+1(x) + (ξ + 1)·fi(x) satisfies (46i+1–48i+1).

(46i+1) By (46i) we know that fi(x) ≥ 0 over Ui ⊃ Ui+1, and by (43i) we know
that ρi+1(x) ≥ 0 over Ui+1. Thus, for any x′′ ∈ Ui+1 we have fi+1(x) = ρi+1(x) +
(ξ + 1)·fi(x) ≥ ρi+1(x) ≥ 0.

(47i+1) Pick an arbitrary x′′ ∈ U i+1 \ Ui+2, and consider the two complementary cases
x′′ ∈ Ui+1 \ Ui+2 and x′′ 6∈ Ui+1 \ Ui+2:
(a) If x′′ ∈ Ui+1 \Ui+2 ⊆ Ui+1, then by (48i) we get ∆fi(x

′′) = 0 and by (44i+1) we get
∆ρi+1(x′′) > 0. Thus, ∆fi+1(x′′) = ∆ρi+1(x′′) + (ξ + 1)·∆fi(x′′) = ∆ρi+1(x′′) > 0;

(b) If x′′ 6∈ Ui+1\Ui+2, then x′′ ∈ (U i+1\Ui+1)\Ui+2 = U i+1\Ui+1. Write ∆fi+1(x′′) as
(~a+ξ·~b)·(x−x′)+∆fi(x

′′). On one hand x′′ ∈ U i+1\Ui+1 ⊆ U i+1 so by (55) we get
(~a+ξ·~b)·(x−x′) ≥ 0, and on the other hand x′′ ∈ U i+1\Ui+1 ⊆ U i\Ui+1 so by (47i)
we get ∆fi(x

′′) > 0. Thus ∆fi+1(x′′) = (~a+ξ·~b) · (x−x′)+∆fi(x
′′) ≥ ∆fi(x

′′) > 0.
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(48i+1) Pick an arbitrary x′′ ∈ Ui+2. By (45i+1) we have ∆ρi+1(x′′) = 0, and by (48i),
since Ui+2 ⊂ Ui+1, we have ∆fi(x

′′) = 0. Thus,

∆fi+1(x′′) = ∆ρi+1(x′′) + (ξ + 1)·∆fi(x′′) = 0 + (ξ + 1)·0 = 0 .

This completes the proof.

Example 5.30. We compute f1, f2 and f3 for the weak LRF τ = 〈x1, x2 − x1, x3〉 of
Example 5.25. So we have

ρ1(x1, x2, x3) = x1, ρ2(x1, x2, x3) = x2 − x1, ρ3(x1, x2, x3) = x3.

We let A′′i x′′ ≤ c′′i , for 1 ≤ i ≤ 3, be the constraint representations of the transition
polyhedra.

(f1) We set f1(x1, x2, x3) = ρ1(x1, x2, x3) = x1, as in the base-case of the induction.
(f2) We have U2 = Q2 ∪Q3, thus we solve (51,52) twice, once with A′′2x′′ ≤ c′′2 and once

with A′′3x
′′ ≤ c′′3 . In both cases

(~a,−~a) = (−1, 1, 0, 1,−1, 0), (−~b,~b) = (−1, 0, 0, 1, 0, 0).

We get ξ1 = 0 and ξ2 = 1, and thus we take ξ = 1. Then we define

f2(x1, x2, x3) = ρ2(x1, x2, x3) + (ξ + 1)·f1(x1, x2, x3) = x2 + x1.

(f3) We have U3 = Q3, thus we solve (51,52) for A′′3x′′ ≤ c′′3 , (~a,−~a) = (0, 0, 1, 0, 0,−1)

and (−~b,~b) = (−1, 1, 0, 1,−1, 0). We get ξ = 0, and thus

f3(x1, x2, x3) = ρ3(x1, x2, x3) + (ξ + 1)·f2(x1, x2, x3) = x3 + x2 + x1.

Now we show how to use f1, . . . , fd of Lemma 5.29 in order to construct a LLRF for
Q1, . . . ,Qk. We first state an auxiliary definition.

Definition 5.31. For affine functions ρ1, . . . , ρj : Qn → Q, and positive constants
δ1, . . . , δj , define R(〈ρ1, . . . , ρj〉, 〈δ1, . . . , δj〉) to be the set of x′′ ∈ Q2n for which there
is an 1 ≤ i ≤ j satisfying (37–39). We say that such transitions x′′ are ranked by
〈ρ1, . . . , ρj〉 (with δ1, . . . , δj), or, to name the position, that they are ranked by ρi in
R(〈ρ1, . . . , ρj〉, 〈δ1, . . . , δj〉).

In the next lemma we construct a LLRF τ` that ranks all transitions of Q`, for
each 1 ≤ ` ≤ k. Afterwards, we show how τ1, . . . , τk are combined into a LLRF τ for
Q1, . . . ,Qk.

LEMMA 5.32. Let 1 ≤ d′ ≤ d be the largest d′ such that Ud′ ∩ Q` 6= ∅ for a given Q`.
Then, τ` = 〈ρ′1, . . . , ρ′d′〉, where ρ′i = fi + i− 1, is a LLRF for Q`.

PROOF. For 1 ≤ i ≤ d′, let Xi = Ui ∩Q`. Note that X1, . . . , Xd′ are closed polyhedra,
Q` = X1 ⊇ . . . ⊇ Xd′ 6= ∅, and Xd′ ∩ Ud′+1 = ∅. We find δ1, . . . , δd′ such that

R(〈ρ′1, . . . , ρ′d′〉, 〈δ1, . . . , δd′〉) ⊇ X1 . (56)

This implies the lemma’s statement since X1 = Q`. The proof is by induction, where
we start from i = d′ and proceed backwards. In the i-th step we find δi such that

Ri
def
= R(〈f [i]i , . . . , f

[i]
d′ 〉, 〈i·δi, i·δi+1, . . . , i·δd′〉) ⊇ Xi , (57i)

where f [i]j = fj + j − i. Then, for i = 1 we get (56). First note that ∆f
[i1]
j = ∆f

[i2]
j = ∆fj

for any 1 ≤ i1 < i2 ≤ d′, this relation is fundamental to our proof. The intuition behind
the offset j − i in f

[i]
j is explained below, at the beginning of the induction step.
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Base-case. We take i = d′, then f
[d′]
d′ = fd′ and thus Rd′ = R(〈fd′〉, 〈d′·δd′〉). Since

Xd′ ⊆ Ud′ and Xd′ ∩ Ud′+1 = ∅, then, for any x′′ ∈ Xd′ , by (46d′ ) we have fd′(x) ≥ 0
and by (47d′ ) we have ∆fd′(x

′′) > 0. Now since Xd′ is a closed polyhedron and ∆fd′
is positive over Xd′ , ∆fd′ must have a minimum µ > 0 in Xd′ . Define δd′ = µ

d′ , then
∆fd′(x

′′) ≥ µ = d′·δd′ . Thus, Xd′ ⊆ Rd′ .

Induction hypothesis. Xi+1 ⊆ Ri+1.

Induction step. We find a value for δi, and show that Xi ⊆ Ri. Note that Ri uses the
same δi+1, . . . , δd′ as Ri+1.

Let us first intuitively explain how the induction step is carried out. We first split Xi

into two sets, Ci and Xi \ Ci, and then show that each transition in Xi \ Ci is ranked
by f [i]j for some j > i, and that each transition in Ci is ranked by f [i]i . To construct Ci,
we simply start by considering the set of transitions that violate the LLRF conditions
(37-39) for all components j > i. This set is not closed, and, in order close it, we include
also transitions that are on the “edge” (simply by turning strict inequalities to non-
strict ones). Being closed is fundamental for a later step in the proof. Going back to
the definition of f [j]i , the reason for which we use the offset j − i (so it becomes larger
as i becomes smaller) can be explained as moving ranked transitions away from some
“edge”. Next we define Ci, and then prove the desired properties of Xi \ Ci and Ci.

Recall that Ci should be a superset of the transitions that are not ranked by any
component i ≤ j ≤ d′ in Ri. Note that for any i ≤ j ≤ d′, by (47j ,48j) we have
∆f

[i]
j (x′′) = ∆fj ≥ 0 for any x′′ ∈ Xi, thus it is not possible to violate (37). This means

that if x′′ is not ranked by some i < j ≤ d′ in Ri, then one of the following must hold:

— ∆f
[i]
j (x′′) < i·δj for any i < j ≤ d′, to violate (39); or

— if there is i < j′ ≤ d′ for which ∆f
[i]
j′ (x′′) ≥ i·δj′ , assuming it is the smallest j′, then

there must be l ≤ j′ for which f
[i]
l (x) < 0, to violate (38).

The set of transitions that satisfy either of the above conditions is not necessarily
closed — due to the use of strict inequalities. To obtain a closed set, we simply turn <
to ≤, and define Ci to be the set of all transitions x′′ ∈ Xi for which one of the following
holds

∀i < j ≤ d′ . ∆f
[i]
j (x′′) ≤ i·δj , (58)

∃l ≥ i . (∀i < j < l . ∆f
[i]
j (x′′) ≤ i·δj) ∧ f [i]l (x) ≤ 0 . (59)

Thus Ci is closed, and consists of a finite union of closed polyhedra.

We now prove that each transition in Xi \Ci is ranked by f [i]j , for some i < j ≤ d′, in
Ri. Pick an arbitrary transition x′′ ∈ Xi \Ci, we show that it is ranked by f [i]j in Ri, for
some j > i. To see this, note the following:

— Since x′′ 6∈ Ci, it violates (58) and (59). To violate (58), there must be i < j ≤ d′ for
which

∆f
[i]
j (x′′) > i·δj . (60)

Take minimal such j, then, for any i < j′ < j, we have ∆f
[i]
j′ (x′′) ≤ i·δj′ . This means

that the first conjunct of (59) is not violated by x′′ for any i < l ≤ j, and thus, to
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violate (59), the second conjunct f [i]l (x) ≤ 0 must be violated, that is:

∀i < l ≤ j . f [i]l (x) > 0 . (61)

— Let i ≤ l ≤ d′. Since Xl = Ul ∩ Q` is not empty, Q` ⊆ U l. This means that x′′ ∈ U l,
and thus by (47l,48l) we have

∆f
[i]
l (x′′) = ∆fl(x

′′) ≥ 0 . (62)

Moreover, since x′′ ∈ Xi ⊆ Ui, by (46i) we have

f
[i]
i (x) = fi(x) ≥ 0 (63)

Inequalities (60–63) show that x′′ is ranked by f [i]j in Ri.

Now we show that the transitions of Ci are ranked by f [i]i in Ri, for some δi. If Ci = ∅
then we simply take δi = δi+1, and clearly Xi ⊆ Ri (since the transitions of Xi \ Ci are
ranked as we have seen above independently from δi). Assume Ci 6= ∅. We first claim
that Ci ∩ Xi+1 = ∅. To see this, take x′′ ∈ Xi+1, by the induction hypothesis we have
Xi+1 ⊆ Ri+1 and thus there must be f [i+1]

j , for some i < j ≤ d′, that ranks x′′, thus:

— ∆f
[i]
j (x′′) = ∆f

[i+1]
j (x′′) ≥ (i+ 1)·δj > i·δj , so (58) is violated;

— f
[i+1]
l (x) ≥ 0 for any i < l ≤ j, and thus f [i]l (x) = f

[i+1]
l (x) + 1 ≥ 1. This means

that (59) cannot be true for any i < l ≤ j, it also cannot be true for any j < l ≤ d′

since ∆f
[i]
j (x′′) > i·δj as we have seen in the previous point.

Now since Ci ∩ Xi+1 = ∅ and Ci ⊆ Xi we get Ci ⊆ Xi \ Xi+1. We also know that
Xi \Xi+1 ⊆ U i \ Ui+1 by definition, and that by (47i) we have ∆fi(x

′′) > 0 throughout
U i \ Ui+1. This means that ∆fi(x

′′) > 0 throughout Ci as well. Now since Ci is a
finite union of closed polyhedra, ∆fi(x

′′) must have a minimum µ > 0. Define δi = µ
i

then f
[i]
i (x′′) = fi(x)′′ ≥ µ = i·µi . Moreover, by (46i) we have fi(x) ≥ 0 and thus

f
[i]
i (x) = fi(x) ≥ 0. This proves that x′′ ∈ Ci is ranked by f [i]i in Ri.

LEMMA 5.33. τ = 〈ρ′1, . . . , ρ′d〉, where ρ′j = fj + j − 1, is a LLRF for Q1, . . . ,Qk.
Moreover, it has a minimal dimension, at most n.

PROOF. That τ is a LLRF follows immediately from Lemma 5.32, because the tran-
sitions of each Q` are ranked in τ`, and each τ` is a prefix of τ . The minimality of the
dimension follows from that of the weak LLRF : if there were a shorter LLRF , since
every LLRF is a weak LLRF , it would contradict Lemma 5.26.

Example 5.34. Consider again the weak LLRF of Example 5.25, and f1 = x1, f2 =
x2+x1 and f3 = x3+x2+x1 that we have computed in Example 5.30. The corresponding
LLRF is τ = 〈x1, x1 + x2 + 1, x1 + x2 + x3 + 2〉, with δ1 = 1, δ2 = 1

2 and δ3 = 1
3 .

THEOREM 5.35. LEXLINRF(Q) is PTIME-decidable.

PROOF. Procedure LLRFSYN, which has polynomial-time complexity by Lemma 5.13,
is complete for the existence of a weak LLRF . If no weak LLRF exists then no LLRF
exists either, and by Lemma 5.33, if one exists then there is a LLRF .

Note that if only termination is of interest, then there is no reason to actually per-
form the construction of Lemmas 5.29 and 5.32, it suffices to check the existence of
a weak LLRF . Ranking functions are also used to bound the number of iterations of
loops, as discussed in the next subsection. In this context, an explicit upper bound
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is desirable, so we may need to carry out the construction of Lemmas 5.29 and 5.32.
This can be done in polynomial time since computing f1, . . . , fn as in Lemma 5.29 only
requires solving k LP problems of bit-size polynomially bounded in the input bit-size.

5.4. Lexicographic Ranking Functions and Iteration Bounds
Alias et al. [2010] showed how lexicographic ranking functions can be used to bound
the number of steps in a program—in our restricted form of programs this is just the
number of iterations of the loop. What is sought is a symbolic bound, as an expression
in terms of the input variables. LRFs clearly provide linear bounds, and LLRFs pro-
vide polynomial bounds when each component of the LLRF has a linear upper bound
(derived using a linear-invariant generator). Clearly, this bound is at most the product
of the bounds on the individual components, and hence a polynomial of degree given
by the dimension of the LLRF (this motivates the interest in LLRFs of minimal dimen-
sion). In the next theorem we show that, in fact, for SLC loops we can always find a
piecewise linear bound (this observation applies whether one is interested in ranking
all rational points or just integer ones). Note that Alias et al. [2010] proved that an
SLC loop has a LLRF if and only if it has a LRF , and thus has a linear bound on the
number of iterations. However, our definition of LLRF captures some SLC loops that
do not have a LRF , as seen in Example 2.12.

THEOREM 5.36. Let Q be the transition polyhedron of an SLC loop, 〈ρ1, . . . , ρd〉 a
(weak) LLRF inferred by Procedure LLRFSYN, and τ = 〈ρ′1, . . . , ρ′d′〉 a LLRF as con-
structed in Lemma 5.32 with corresponding δ1, . . . , δd′ . Given an input x ∈ Qn, let
j be the minimum 1 ≤ j ≤ d′ such that ρ′j(x) < 0, or j = d′ if no one exists, then∑j−1
i=1 (bρ′i(x)/δic+ 1) is an upper bound on the number of iterations of Q when starting

from x.

PROOF. By Lemma 5.29, any z′′ ∈ Q satisfies ∆ρ′i(z
′′) ≥ 0; for any 1 ≤ i ≤ d′, which

means that once the i-th component of τ become negative, it is then disabled and can-
not rank any transition anymore (since it remains negative). In addition, when a tran-
sition is ranked by the i-th component, ∆ρ′i(x

′′) ≥ δi which, together with the above
argument, means that the i-th component of τ can rank at most bρ′i(x)/δic + 1 tran-
sitions before it becomes negative. Now since every transition in the execution trace
must be ranked by some component ρ′i of τ , and i cannot be ≥ j since such components
are disabled right from the beginning, we get the upper bound

∑j−1
i=1 (bρ′i(x)/δic+1).

Remarks:

(1) If we are only interested in an upper bound up to a constant factor, we can
avoid the construction of Lemmas 5.29 and 5.32 because

∑j−1
i=1 (bρ′i(x)/δic + 1) is

O(
∑d
i=1 max(0, ρi(x)).

(2) The theorem is easily extended to conclude that the piecewise linear bound is also
valid for MLC loops, when ρd ranks at least one transition from each Qi, that is,
Ud ∩Qi 6= ∅ for all 1 ≤ k ≤ d.

One of the interesting parts of [Alias et al. 2010] is the way they compute an iter-
ation bound which is sometimes better than the product of the bounds on the LLRF
components. The idea: Since ρ always decreases, the number of steps is bounded by
the number of distinct values it takes throughout the computation. Let C be the poly-
hedron which circumscribes the state space (in our case, the loop condition); ρ(C) is a
d-dimensional polyhedron, and, assuming that the program computes over integers,
the number of steps is bounded by the number of integer points in this polyhedron,
i.e., |I(ρ(C))|. Alias et al. estimate this number using techniques related to Ehrhart
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Algorithm 2: Find a point in the relative interior
InteriorPoint(S)
Input: Space of quasi-LRFs S
Output: A point (λ0, λ) in the relative interior
begin

1 for i = 1→ n do
2 a← minimize λi wrt S
3 b← maximize λi wrt S
4 if a = b then ci = a

6 else pick ci in the non-closed interval (a, b), prioritizing 0 and integers

8 S ← S ∧ {λi = ci}
9 c0 ← minimize λ0 wrt S

10 return (c0,~c)

polynomials, as implemented in the PolyLib library [Wilde 1993]. Such an approach
can also be used with our class of functions, but it is an open problem how to get the
best results out of such computations. For example, is it possible to find a computation
method that will always get a piecewise linear bound in the situations described by
the above theorem?

6. PROTOTYPE IMPLEMENTATION
The different algorithms presented in this paper for synthesizing LRFs an LLRFs, both
for the general cases and the special PTIME cases, have been implemented. Our tool,
iRANKFINDER, can be tried out via http://www.loopkiller.com/irankfinder. It receives
as input an MLC loop in constraint representation, and allows applying different al-
gorithms for LINRF(Z), LINRF(Q), LEXLINRF(Z), or LEXLINRF(Q). For LRFs, the
implementation includes the algorithms of Theorems 3.19 and 4.24. By default it uses
the second one since the first one relies on the generator representation of the tran-
sition polyhedron, which may take exponential time to compute. For LLRFs it uses
Algorithm 1.

Our algorithm for synthesizing non-trivial quasi-LRFs, as described in Lemma 5.4,
requires finding a point in the relative interior of a polyhedron S. Note that S is of
dimension n′ = n+ 1 +

∑k
i=1 2mi and is defined by m′ = k(8n+ 2) +

∑k
i=1 2mi inequal-

ities, where mi is the number of inequalities in Qi. Existing algorithms for finding an
interior point require solving at most n′ or m′ LP problems, and they have polynomial-
time complexity [Fukuda 2013, Sec. 8.3]. Now note that instead of finding a point in
the relative interior of S, we could also project S onto ~λ, and then find a point in the
relative interior of the resulting polyhedron S|~λ. It is easy to see that Lemma 5.4 re-
mains valid. In our implementation we find such point without actually computing
S|~λ, by solving only 2n + 1 LP problems. The underlying procedure is depicted in Al-
gorithm 2, it finds values for ~λ iteratively as follows: in the i-th iteration it computes
the minimum and maximum values of λi in S, and then sets λi to a value that lies be-
tween those extremes. Once all λi are computed, we look for the minimum compatible
value of λ0, and then (c0,~c) is the desired point. We do not claim that the complexity of
this algorithm is polynomial, since we add λi = c to S in each iteration and thus the
bit-size might grow exponentially. However, we have experimentally observed that it
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performs far better than an algorithm that finds a point in the relative interior of S.
Note that at Line 7, we prioritize 0 over any other coefficient, as a heuristic to obtain
“small” ranking functions. Moreover, we prioritize integer over fractional coefficients.
Both measures are intended to get more readable results, but we think they may also
improve time bounds inferred from our ranking functions.

Computing the integer hull of a polyhedron, in the case of LINRF(Z) and
LEXLINRF(Z), is done by first decomposing its set of inequalities into independent
components, and then computing the integer hull of each component separately. Each
set of inequalities is first matched against the PTIME cases of sections 4.1. If this
matching fails, the integer hull is computed using the algorithm described by Charles
et al. [2009]. Note that this algorithm supports only bounded polyhedra, the integer
hull of an unbounded polyhedron is computed by considering a corresponding bounded
one [Schrijver 1986, Th. 16.1, p. 231]. In addition, for octagonal relations, it gives the
possibility of computing the tight closure instead of the integer hull. As we have seen
in Section 4.3, when this option is used, completeness of LINRF(Z) is not guaranteed.

The Parma Polyhedra Library [Bagnara et al. 2008b] is used for converting between
generator and constraints representations, solving (mixed) LP problems, etc.

7. RELATED WORK
There are several works [Sohn and Gelder 1991; Colón and Sipma 2001; Podelski and
Rybalchenko 2004a; Mesnard and Serebrenik 2008; Alias et al. 2010] that directly ad-
dress the LINRF(Q) problem for SLC or MLC loops. In all these works, the underlying
techniques allow synthesizing LRFs and not only deciding if one exists. The common
observation to all these works is that synthesising LRFs can be done by inferring the
implied inequalities of a given polyhedron (the transition polyhedron of the loop), in
particular inequalities like conditions (7) and (8) of Definition 2.9 that define a LRF .
Regarding completeness, all these methods are complete for LINRF(Q) but not for
LINRF(Z). They can also be used to approximate LINRF(Z) by relaxing the loop such
that its variables range over Q instead of Z, thus sacrificing completeness. All these
methods have a corresponding PTIME algorithm. Exceptions in this line of research
are the work of Bradley et al. [2005c] and Cook et al. [2010] that directly address the
LINRF(Z) problem for MLC loops. Below, we comment in more detail on each of these
works.

Sohn and Gelder [1991] considered MLC loops with variables ranging over N. These
are abstractions of loops from logic programs. The loops were relaxed from N to Q+

before seeking a LRF , however, this is not explicitly mentioned. The main observation
in this work is that the duality theorem of LP [Schrijver 1986, p. 92] can be used to
infer inequalities that are implied by the transition polyhedron. The authors also men-
tion that this was observed before by Lassez [1990] in the context of solving CLP(R)
queries. Completeness was not addressed in this work, and the PTIME complexity
was mentioned but not formally addressed. Later, Mesnard and Serebrenik [2008] for-
mally proved that the techniques of Sohn and Gelder [1991] provide a complete PTIME
method for LINRF(Q), also for the case of MLC loops. They pointed out the incomplete-
ness for LINRF(Z).

Probably the most popular work on the synthesis of LRFs is the one of Podelski and
Rybalchenko [2004a]. They also observed the need for deriving inequalities implied by
the transition polyhedron, but instead of using the duality theorem of LP they used the
affine form of Farkas’ lemma [Schrijver 1986, p. 93]. Completeness was claimed, and
the statement did not make it clear that the method is complete for LINRF(Q) but not
for LINRF(Z). This was clarified, however, in the PhD thesis of Rybalchenko [2004].
One of the reasons for the impact of this work is its use in the Terminator tool [Cook
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et al. 2006], which demonstrated the use of LRFs in termination analysis of complex,
real-world programs.

Bagnara et al. [2012] proved that the methods of Mesnard and Serebrenik [2008]
and Podelski and Rybalchenko [2004a] are actually equivalent, i.e., they compute the
same set of LRFs. They also showed that the method of Podelski and Rybalchenko can,
potentially, be more efficient since it requires solving rational constraints systems with
fewer variables and constraints.

The earliest appearances of a solution based on Farkas’ Lemma, that we know of, are
by Colón and Sipma [2001], in the context of termination analysis, and by Feautrier
[1992a], in the context of automatic parallelization of computations. Colón and Sipma
[2001] did not claim that the problem can be solved in polynomial time, and indeed
their implementation seems to have exponential complexity since they use genera-
tors and polars, despite the similarity of the underlying theory to that of Podelski and
Rybalchenko [2004a]. Completeness was claimed, however it was not explicitly men-
tioned that the variables range over Q and not Z (the programs in the examples used
integer variables). In this work the input loop comes with an initial condition on the
input, which is used to infer a supporting invariant.

Feautrier [1992a] described scheduling of computations that can be described by re-
cursive equations. An abstraction to a form similar to an MLC loop allowed him to
compute a so-called schedule, which is essentially a ranking function, but used back-
wards, since the computations at the bottom of the recursion tree are to be completed
first. Feautrier [1992b] extends this work to lexicographic rankings; this work was
subsequently extended by Alias et al. [2010] to LLRF generation, as described below.

Cook et al. [2010] observed that the Farkas-lemma based solution is complete for
LINRF(Z) when the input MLC loop is specified by integer polyhedra. They also men-
tion that any polyhedron can be converted to an integer one, and that this might in-
crease its size exponentially. Unlike our work, they do not address PTIME cases or
the complexity of LINRF(Z). In fact, the main issue in that work is the synthesis of
ranking functions for machine-level integers (bit-victors).

Bradley et al. [2005c] directly addressed the LINRF(Z) problem for MLC loops, and
stated that the methods of Colón and Sipma [2001] and Podelski and Rybalchenko
[2004a] are not complete for LINRF(Z). Their technique is based on the observation
that if there is a LRF , then there exists one in which each coefficient λi has a value
in the interval [−1, 1], and moreover with denominators that are power of 2. Using
this observation, they recursively search for the coefficients starting from a region
defined by a hyper-rectangle in which each λi is in the interval [−1, 1]. Given a hyper-
rectangle, the algorithm first checks if one of its corners defines a LRF , in which case
it stops. Otherwise, the region is either pruned (if it can be verified that it contains
no solution), or divided into smaller regions for recursive search. Testing if a region
should be pruned is done by checking the satisfiability of a possibly exponential (in
the number of variables) number of Presburger formulas. The algorithm will find a
LRF if exists, but it might not terminate if no LRF exists. To make it practical, it
is parametrized by the search depth, thus sacrificing completeness. It is interesting
to note that the search-depth parameter in their algorithm actually bounds the bit-
size of the ranking function coefficients. Our Corollary 3.22 shows that it is possible
to deterministically bound this depth, that turns their algorithm into a complete one,
though still exponential. In addition to LRFs, this technique is extended for inferring
linear invariants over Z.

The interest of Bradley et al. [2005c] was in MLC loops in which integer division
by constants is allowed. It is incorrect to replace integer division x′ = x

c by precise
division, but the operation can be simulated by two paths of linear constraints: {x ≥
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0, c · x′ + y = x, 0 ≤ y ≤ c− 1} and {x ≤ 0, c · x′ − y = x, 0 ≤ y ≤ c− 1}. This illustrates
the usefulness of (multipath) linear-constraint loops.

Codish et al. [2005] studied the synthesis of LRFs for SLC loops with size-change
constraints (i.e., of the form xi ≥ x′j + c where c ∈ {0, 1}), and monotonicity constraints
(i.e., of the form X ≥ Y + c, where X and Y are variables or primed variables, and
c ∈ {0, 1}). In both cases the variables ranged over N. For size-change constraints, they
proved that the loop terminates if and only if a LRF exists, moreover, such function
has the form

∑
λi · xi with λi ∈ {0, 1}. For the case of monotonicity constraints, they

proved that the loop terminates if and only if a LRF exists for the balanced version
of the loop, and has the form

∑
λi · xi with λi ∈ {0,±1}. Intuitively, a balanced loop

includes the constraint x′i ≥ x′j + c if and only if it includes xi ≥ xj + c. They showed
how to balance the loop while preserving its termination behavior. Recently, Bozga
et al. [2012] presented similar results for SLC loops defined by octagonal relations,
implying that termination is decidable (even PTIME) for such loops.

Cousot [2005] used Lagrangian relaxation for inferring possibly non-linear ranking
functions. In the linear case, Lagrangian relaxation is similar to the affine form of
Farkas’ lemma.

The earliest work that we know, that addresses lexicographic-linear ranking func-
tions, is that of Colón and Sipma [2002]. As in their previous work, they use LP
methods based on the computation of polars. The LLRF is not constructed explic-
itly but can be inferred from the results of the algorithm. Bradley et al. [2005a] em-
ployed a constraint-solving approach to search for lexicographic-linear ranking func-
tions, where a template solution is set up and linear programming is used to find
the unknown coefficients in the template. Bradley et al. [2005b] also relaxed the
notion of ranking functions to functions that eventually decrease, while in another
work [Bradley et al. 2005d] they considered MLC loops with polynomial transitions
and the synthesis of lexicographic-polynomial ranking functions. All these works ac-
tually tackle an even more complex problem, since they also search for supporting in-
variants, based on the transition constraints and on given preconditions. Harris et al.
[2011] demonstrate that it is advantageous, to a tool that is based on a CEGAR loop,
to search for LLRFs instead of constructing transition invariants from LRFs only as in
the original Terminator tool. They use a simplified version of the template method of
Bradley et al. [2005a]. Similar observations have been reported by Cook et al. [2013],
Brockschmidt et al. [2013] and Larraz et al. [2013].

Alias et al. [2010] again extended the Farkas-lemma based solution for LINRF(Q)
to the construction of LLRFs. Like Colón and Sipma [2002], they do it for programs
with an arbitrary control-flow graph. Unlike the latter, they prove completeness of
their procedure (which means completeness over the rationals), and their algorithm is
of polynomial time. The goal of Alias et al. [2010] was to use these functions to derive
cost bounds (like a bound on the worst-case number of transitions in terms of the initial
state); this bound is (when it can be found) a polynomial, whose degree is at most the
dimension of the (co-domain of the) lexicographic ranking function. Their construction
produces a function of minimum dimension (within their class of ranking functions,
which is narrower than ours, as discussed in Section 2).

Decidability and complexity of termination (in general, not necessarily with LRFs
or LLRFs) of SLC and MLC loops has been intensively studied for different classes of
constraints. For SLC loops, Tiwari [2004] proved that the problem is decidable when
the update is affine linear and the variables range over R. Braverman [2006] proved
that this holds also for Q, and for the homogeneous case it holds for Z. Both considered
universal termination, i.e., for all input. Also, in both cases they allow the use of strict
inequalities in the condition. Ben-Amram et al. [2012] showed that the termination of
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SLC loops is undecidable if the use of a single irrational coefficient is allowed, as well
as for MLC loops with at least two paths, and certain other variants.

For some specific forms of integer MLC loops termination is decidable: Extend-
ing previous work on Size-Change Termination [Lee et al. 2001], Ben-Amram [2011]
proved that termination is decidable (more precisely: PSPACE-complete) for MLC
loops with monotonicity constraints (as defined above). Bozzelli and Pinchinat [2012]
further extended the result (still PSPACE-complete) for Gap Constraints, which are
constraints of the form X − Y ≥ c where c ∈ N and X and Y are variables or primed
variables. This is, clearly, an extension of monotonicity constraints, which in particu-
lar allows for more precise representation of relations of variables to constants. Ben-
Amram [2008] proved that for difference constraints over the integers, specifically up-
dates of the form xi − x′j ≥ c where c ∈ Z, and guards xi ≥ 0, the termination problem
becomes undecidable. However for a subclass in which each target (primed) variable
might be constrained only once (in each path of a multiple-path loop) the problem is
PSPACE-complete.

Regarding ranking functions, Ben-Amram [2011] shows that every terminating pro-
gram of the considered form has a ranking function which is piecewise lexicographic.
This is achieved by transforming the program (by splitting CFG nodes) into one that
is guaranteed to have a LLRF . Such a result is probably achievable for the gap con-
straints of Bozzelli and Pinchinat [2012] as well. However, it is unknown how to explic-
itly construct ranking functions for difference constraints as those used by Ben-Amram
[2008].

8. CONCLUDING REMARKS
We have studied the Linear Ranking problem for SLC and MLC linear-constraint loops
and observed the difference between the LINRF(Q) problem, where variables range
over the rationals, and the LINRF(Z) problem, where variables only take integer val-
ues. In practice, the latter is more common, but the complexity of the problem has
not been studied before; the common approach has been to relax the problem to the
rationals, where complete, polynomial-time decision procedures have been known.

We have confirmed that LINRF(Z) is a harder problem, proving it to be coNP-
complete. On a positive note, this shows that there is a complete solution, even
if exponential-time. We further showed that some special cases of importance do
have a PTIME solution. The latter results arise from a proof that for integer poly-
hedra, LINRF(Z) and LINRF(Q) are equivalent. Interestingly, this is not the case
for termination in general. For example, the transition polyhedron of the SLC loop
“while x ≥ 0 do x′ = 10− 2x” is integral; the loop terminates when the variables range
over Z but does not terminate when they range over Q, specifically for x = 10

3 . Note
that this loop does not have a LRF over the integers.

We have obtained results similar to the above regarding the LEXLINRF(Z) problem,
the existence of lexicographic-linear ranking functions. Our polynomial-time algorithm
for LEXLINRF(Q) is also new, and extends the class of functions that can be found by
the previously known polynomial-time algorithm of Alias et al. [2010]. Our algorithm
is optimal, in the sense that it synthesizes LLRFs with minimal dimension.

A more general notion of ranking function applies to an arbitrary control-flow graph
with transitions specified by source and target nodes as well as linear constraints on
the values of variables. In this setting, one seeks to associate a (possibly different)
lexicographic-linear (or linear) function τν with each node ν, so that on a transition
from ν to ν′ we should have τν(x) �lex τν′(x

′). Such functions can be found by LP ,
a procedure complete over the rationals, using a simple extension of the solution for
the loops we have discussed [Mesnard and Serebrenik 2008; Alias et al. 2010]. The
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considerations regarding the complexity of the corresponding problems over integers
are essentially the same as those we have presented, and we preferred to use the
simpler model for clearer presentation.

In all examples that we have discussed in this paper, when a loop has a LRF over
Z but not over Q, then the loop did not terminate over Q. This is, however, not the
case in general. A counter-example can be constructed by combining (i.e., executing
simultaneously) the loop of Example 3.6 and Loop (1) of Section 1.

In the context of complexity (cost) analysis, there is a special interest in LRFs that
decrease at least by 1 in each iteration, since they bound the number of iterations of a
given loop. In order to get tight bounds, even if Q has a LRF it might be worthwhile
to compute one for I(Q). To see this, let us add 4x1 ≥ 3 to the condition of Loop (1)
in Section 1. Then, both Q and I(Q) have LRFs. For I(Q) the most tight one (under
the requirement to decrease by at least 1) is f1(x1, x2) = x1 + x2 − 1, while for Q it
is f2(x1, x2) = 2x1 + 2x2 − 2. Hence, a better bound is obtained using I(Q). The same
observation applies to loop parallelization: the functions’ value gives the schedule’s
latency (depth of the computation tree) and a lower value is preferable.

In Section 2.2 we have discussed the differences between our LLRFs and those
of Alias et al. [2010] and Bradley et al. [2005a]. This raises the question of how our
results extend to these other definitions of LLRFs. Alias et al. [2010] already show that
their algorithm is complete and PTIME over the rationals, and it is easy to show that
it is complete over the integers when computing the integer hull first, in which case
our special PTIME case also apply. Over the integers, the decision problem is clearly
coNP-hard (using the same reduction of Section 3.1), and we conjuncture that it is in
coNP as well. The algorithm of Bradley et al. [2005a] is exponential over the rationals,
since they search also for supporting invariants starting from a given preconditions.
If one is interested only in LLRFs which are valid for any input, we conjuncture that
it can be done in polynomial time, by iteratively seeking functions that are similar
to our quasi-LRFs. Over the integers, the corresponding decision problem is clearly
coNP-hard (using the same reduction of Section 3.1), and we conjuncture that it is in
coNP as well. The technical development of the above conjunctures is left for future
work.

In Section 4.3 we have discussed the LINRF(Z) problem for loops specified by octag-
onal relations. We showed that it is not possible to obtain a polynomial-time algorithm
that is based on computing the integer hull as in our special PTIME cases. The ques-
tion of whether this special case of LINRF(Z) is in PTIME or not is still open.

In this paper we have considered LRFs and LLRFs which are valid for any initial
input. However, loops often come with a precondition that restricts the space of valid
input. This is the case, for example, of the counter-example “lassos” generated by ap-
proaches that are based on CEGAR [Cook et al. 2006; Cook et al. 2013; Brockschmidt
et al. 2013; Harris et al. 2011]. The complexity classification of the corresponding deci-
sion problems, both over rationals and integers, is still open. Recent work [Heizmann
et al. 2013; Leike 2013] provides partial answers for the rational case.

A more general definition for LLRFs can by obtained by requiring (10) of Defini-
tion 2.11 to hold only for j = i. This is similar to the definition of Bradley et al.
[2005a], however, it is more general since it does not require a fixed association of
ranking-function components with the paths of the loop. Additional generalizations of
linear ranking functions are eventual ranking functions [Bagnara and Mesnard 2013]
and Polyranking functions [Bradley et al. 2005b]. The complexity classification of the
corresponding decision problems, over the integers (and in the latter case, also over
rationals), is still open.

Regarding the potential practical impact of our results, recent work [Cook et al.
2013; Brockschmidt et al. 2013] argues that the performance of a Terminator-
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like [Cook et al. 2006] tool can be dramatically improved by the use of LLRFs, in-
stead of disjunctive well-founded relations [Podelski and Rybalchenko 2004b]. This is
demonstrated by their experiments, despite of using an exponential-time algorithm.
While we have not implemented our methods in a complete tool, their results indicate
that using a polynomial-time LLRFs algorithm could significantly improve such ana-
lyzers. In addition, our special PTIME cases that are based on affine linear updates
are also appealing in practice, because loops (in real programs) that operate on integer
variables often have this form. Thus, for such cases, one can trust the answer of the
polynomial-time algorithm over the rationals.

Our algorithm for computing LLRFs, similarly to others [Alias et al. 2010; Larraz
et al. 2013], is based on iteratively eliminating transitions. When the algorithm fails
to find a LLRF , it is guaranteed that no infinite execution can involve any of the elim-
inated transitions infinitely often. In other words, any infinite execution must have a
suffix that consists only of the remaining transitions (the potentially non-terminating
kernel). Ganty and Genaim [2013] show how this kernel can be used to infer precon-
ditions on the input that guarantee termination, however, their technique is devel-
oped for a more general kind of termination witness, namely disjunctive well-founded
relations [Podelski and Rybalchenko 2004b]. Exploiting this approach in our setting
might have practical advantages, since the performance bottleneck in the algorithm
of Ganty and Genaim [2013] is the computation of the potentially non-terminating
kernel, which we can compute (or approximate) in polynomial time.

Finally, a theoretical study does not capture all aspects of the relative merits of dif-
ferent types of termination witnesses. In practice, first, the performance of algorithms
is a more involved issue than just a complexity class; e.g., some polynomial algorithms
are better than others, and some super-polynomial algorithms are nonetheless practi-
cal. In addition, considerations such as simplicity of the termination witnesses, infor-
mation provided for certifying the witness, etc., may be important, depending on the
application. Thus, we conclude that empirical studies and algorithm-engineering are
still an important objective for future research.
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