
TLP 11 (4–5): 503–520, 2011. C© Cambridge University Press 2011

doi:10.1017/S1471068411000147

503

SAT-based termination analysis using
monotonicity constraints over the integers

MICHAEL CODISH and IGOR GONOPOLSKIY

Department of Computer Science, Ben-Gurion University, Israel

(e-mail: mcodish@cs.bgu.ac.il, gonopols@cs.bgu.ac.il)

AMIR M. BEN-AMRAM

School of Computer Science, Tel-Aviv Academic College, Israel

(e-mail: amirben@mta.ac.il)

CARSTEN FUHS and JÜRGEN GIESL

LuFG Informatik 2, RWTH Aachen University, Germany

(e-mail: fuhs@informatik.rwth-aachen.de, giesl@informatik.rwth-aachen.de)

Abstract

We describe an algorithm for proving termination of programs abstracted to systems of

monotonicity constraints in the integer domain. Monotonicity constraints are a nontrivial

extension of the well-known size-change termination method. While deciding termination for

systems of monotonicity constraints is PSPACE complete, we focus on a well-defined and

significant subset, which we call MCNP (for “monotonicity constraints in NP”), designed to

be amenable to a SAT-based solution. Our technique is based on the search for a special

type of ranking function defined in terms of bounded differences between multisets of integer

values. We describe the application of our approach as the back end for the termination

analysis of Java Bytecode. At the front end, systems of monotonicity constraints are obtained

by abstracting information, using two different termination analyzers: AProVE and COSTA.

Preliminary results reveal that our approach provides a good trade-off between precision and

cost of analysis.

KEYWORDS: termination analysis, monotonicity constraints, SAT encoding

1 Introduction

Proving termination is a fundamental problem in verification. The challenge of

termination analysis is to design a program abstraction that captures the properties

needed to prove termination as often as possible, while providing a decidable

sufficient criterion for termination. Typically, such abstractions represent a program

as a finite set of abstract transition rules, which are descriptions of program steps,

where the notion of step can be tuned to different needs. The abstraction considered

in this paper is based on monotonicity-constraint systems (MCSs).

504 M. Codish et al.

The MCS abstraction is an extension of the size-change termination (SCT) (Lee

et al. 2001) abstraction, which has been studied extensively during the last decade

(see http://www2.mta.ac.il/~amirben/sct.html for a summary and references).

In the SCT abstraction, an abstract transition rule is specified by a set of inequalities

that show how the sizes of program data in the target state are bounded by those in

the source state. Size is measured by a well-founded base order. These inequalities

are often represented by a size-change graph.

The size-change technique was conceived to deal with well-founded domains,

where infinite descent is impossible. Termination is deduced by proving that any

(hypothetical) infinite run would decrease some value monotonically and endlessly

so that well-foundedness would be contradicted.

Extending this approach, a monotonicity constraint (MC) allows for any con-

junction of order relations (strict and nonstrict inequalities) involving any pair of

variables from the source and target states. So, in contrast to SCT, one may also

have relations between two variables in the target state or two variables in the source

state. Thus, MCSs are more expressive, and Codish et al. (2005) observe that earlier

analyzers based on monotonicity constraints (Lindenstrauss and Sagiv 1997; Codish

and Taboch 1999; Lindenstrauss et al. 2004) apply a termination test, which is sound

and complete for SCT, but incomplete for monotonicity constraints, even if one does

static int a(int x, int y){
if (x>y){

int x1=x-1; int y1=y+1;
if (x1 >=y1)

return a(x1,y1);
else return y;

} else {
int x1=x+1; int y1=y-1;
if (x1 <=y1)

return a(x1,y1);
else return x;

}
}

not change the underlying model, namely, that

“data” are from an unspecified well-founded

domain. They also point out that monotonicity

constraints can imply termination under a different

assumption—that the data are integers. Not being

well founded, integer data cannot be handled by

SCT. As an example, consider the Java program on

the right, which computes the average of x and y.

The loops in this program can be abstracted to the

following monotonicity-constraint transition rules:

(1) a(x, y) :– x > y, x > x′, y′ > y, x′ � y′; a(x′, y′),

(2) a(x, y) :– y � x, x′ > x, y > y′, y′ � x′; a(x′, y′).

To prove termination of the Java program, it is sufficient to focus on the

corresponding abstraction. Note that termination of this program cannot be proved

using SCT, not only because SCT disallows constraints between source variables

(such as x>y), but also because it computes with integers rather than natural

numbers.

To see how the transition constraints imply termination, observe that if rule (1) is

repeatedly taken, then the value of y grows; constraint x > y (with the fact that x

descends) implies that this cannot go on forever. In rule (2), the situation is reversed:

y descends and is lower bounded by x. In addition, constraint y′ � x′ of rule (2)

implies that, once this rule is taken, there can be no more applications of rule (1).

Therefore, any (hypothetical) infinite computation would eventually enter a loop of

rule (1)s or a loop of rule (2)s; possibilities that we have just ruled out. In this paper,

we show how to obtain such termination proofs automatically using SAT solving.

SAT-based termination using monotonicity constraints 505

Although MCS and SCT are abstractions where termination is decidable, they

have a drawback: the decision problems are PSPACE complete and a certificate

for termination under these abstractions can be of prohibitive complexity (not

“polynomially computable” (Ben-Amram 2009)). Typical implementations based

on the SCT abstraction apply a closure operation on transition rules, which is

exponential both in time and space. Ben-Amram and Codish (2008) addressed

this problem for SCT, identifying an NP complete subclass of SCT, called SCNP,

which yields polynomial-size certificates. Moreover, Ben-Amram and Codish (2008)

automated SCNP using a SAT solver. Experiments indicated that, in practice, this

method had good performance and power when compared to a complete SCT

decision procedure and had the additional merit of producing certificates.

In this paper, we tackle the similar problem to prove termination of monotonicity-

constraint systems in the integer domain. As noted above, the integer setting is more

complicated than the well-founded setting. Termination is often proved by looking

at differences of certain program values (which should be decreasing and lower-

bounded). One could simulate such reasoning in SCT by creating fresh variables

to track the nonnegative differences of pairs of original variables. However, this

loses precision and may square the number of variables, which is an exponent in

the complexity of most SCT algorithms. Instead, we use an idea from Ben-Amram

and Codish (2008), which consists of mapping program states into multisets of

argument values. The adaption of this method to integer data is nontrivial. Our new

solution uses the following ideas: (1) We associate two sets with each program point

and define how to “subtract” them so that the difference can be used for ranking

(generalizing the difference of two integers). This avoids the quadratic growth in the

exponent of the complexity, since we are only working with the original variables

and relations, and is also more expressive. (2) We introduce a concept of “ranking

functions,” which is less strict than typically used but still suffices for termination.

It allows the codomain of the function to be a non-well-founded set that has a

well-founded subset. This gives an additional edge over the näıve reduction to SCT,

which can only make use of differences which are definitely nonnegative.

After presenting preliminaries in Section 2, Section 3 introduces ranking structures,

which are termination witnesses. In Section 4, we show that such a witness can be

verified in polynomial time; hence, the resulting subclass of terminating MCSs lies

in NP. Consequently, we call it MCNP. In Section 5, we devise an algorithm that

uses a SAT solver as a back end to solve the resulting search problems. Section 6

describes an empirical evaluation using a prototypical implementation as the back

end for termination analysis of Java Bytecode (JBC). Results indicate a good trade-

off between precision and cost of analysis. All proofs and further details of the

evaluation can be found in the appendices.

Related work. Termination analysis is a vast field and we focus here on the

most closely related work. On termination analyzers for JBC, we mention COSTA

(Albert et al. 2008), Julia (Spoto et al. 2010), and AProVE (Brockschmidt et al.

2010; Otto et al. 2010). Both COSTA and Julia abstract programs into a CLP form,

as in this work; but use a richer constraint language that makes termination of

506 M. Codish et al.

the abstract program undecidable. On extending SCT to the integer domain: Avery

(2006) uses constraints of the form x>y′, x�y′, x<y′, x�y′ along with polyhedral

state invariants (similar constraints as those used by COSTA and Julia) to find

lower bounded combinations of the variables. Manolios and Vroon (2006) use SCT

constraints on pseudovariables that represent “measures” invented by the system.

This allows it to handle integers by taking, for example, the differences of two

variables as a measure. Dershowitz et al. (2001) and Serebrenik and De Schreye

(2004) prove termination of logic programs that depend on numerical constraints by

inferring “level mappings” based on constraints selected from the source program;

so, a constraint, like x > y, can trigger the use of x − y as a level mapping. There

are numerous applications of SAT for deciding termination problems for all kinds

of programs (e.g., one of the first such papers is Codish et al. (2006)).

2 Monotonicity-constraint systems and their termination

Our method is programming-language independent. It works on an abstraction of

the program provided by a front end. An abstract program is a transition system

with states expressed in terms of a finite number of variables (argument positions).

Definition 1 (constraint transition system)

A constraint transition system is an abstract program, represented by a directed

multigraph called a control-flow graph (CFG). The vertices are called program points

and they are associated with fixed numbers (arity) of argument positions. We write

p/n to specify the arity of vertex p. A program state is an association of a value

from the value domain to each argument position of a program point p, denoted

by p(x1, . . . , xn) and abbreviated as p(x̄). The set of all states is denoted by St. The

arcs of the CFG are associated with transition rules, specifying relations on program

states, which we write as p(x̄) :– π; q(ȳ). The transition predicate π is a formula in

the constraint language of the abstraction.

Note that a state corresponds to a ground atom: argument positions are associated

with specific values. In a transition rule, positions are associated with variables that

can only be constrained through π. Thus, in the notation p(x̄), x̄ may represent

ground values or variables, according to context. The constraint language in our

work is that of monotonicity constraints.

Definition 2 (monotonicity constraint)

A monotonicity constraint (MC) π on V = x̄∪ ȳ is a conjunction of constraints x�y

where x, y ∈ V , and � ∈ {>,�}. We write π |= x�y, whenever x�y is a consequence

of π (in the theory of total orders). This consequence relation is easily computed,

e.g., by a graph algorithm. A transition rule p(x̄) :– π; q(ȳ), where π is a MC, is also

known as a monotonicity-constraint transition rule. An integer monotonicity-constraint

transition system (MCS)1 is a constraint transition system where the value domain

is � and transition predicates are monotonicity constraints.

1 In this work, only the integer domain is of interest; hence, “integer” will be omitted. Moreover, instead
of “monotonicity-constraint transition systems” we also speak of “monotonicity-constraint systems”.

SAT-based termination using monotonicity constraints 507

It is useful to represent a MC as a directed graph (often denoted by the letter g),

with vertices x̄∪ ȳ, and two types of edges (x, y): weak and strict. If π |= x > y, then

there is a strict edge from x to y, and if π |= x � y (but not x > y), then the edge

is weak. Note that there are two kinds of graphs, those representing transition rules

and the CFG. We often identify an abstract program with its set G of transition

rules, the CFG being implicitly specified.

Definition 3 (run, termination)

Let G be a transition system. A run of G is a sequence p0(x̄0)
π0→ p1(x̄1)

π1→ p2(x̄2) . . . of

states labeled by constraints such that each labeled pair of states, pi(x̄i)
πi→ pi+1(x̄i+1),

corresponds to a transition rule pi(x̄) :– πi; pi+1(ȳ) from G (identical except that

variables x̄ and ȳ are replaced by values x̄i and x̄i+1) and such that πi is satisfied. A

transition system terminates if it has no infinite run.

Example 4

This example presents a MCS in textual form as well as graphical form. This system

is terminating, and in the following sections, we shall illustrate how our method

proves it. In the graphs, solid arrows stand for strict inequalities and dotted arrows

stand for weak inequalities.

g1 = p(x1, x2, x3) :– y1 > x1, y2 � x1, x2 � y2, x2 � y3, x2 � x1; p(y1, y2, y3)

g2 = p(x1, x2, x3) :– y1 � x1, y1 > x2, y2 > x2, x3 � y2, x3 � y3, x3 > x2; p(y1, y2, y3)

g3 = p(x1, x2, x3) :– y1 > x1, x2 � y2; q(y1, y2)

g4 = q(x1, x2) :– y1 � x1, x2 � y2, x2 � y3, x2 � x1; p(y1, y2, y3)

p :

p :

x1 x2��

����

x3

y1

��

y2

��

y3

p :

p :

x1 x2 x3��

�� ��
y1

�� �������
y2

��

y3

p :

q :

x1 x2

��

x3

y1

��

y2

q :

p :

x1 x2��

����
y1

��

y2 y3

3 Ranking structures for monotonicity-constraint systems

This section describes ranking structures, a concept that we introduce for proving

termination of MCSs. Section 3.1 presents the necessary notions in general form.

Then, Section 3.2 specializes them to the form we use for MCNP.

3.1 Ranking structures

Recall that � is a quasi-order if it is transitive and reflexive; its strict part x � y is

the relation (x � y) ∧ (y 	� x); the quasi-order is well founded if there is no infinite

chain with �. A set is well founded if it has a tacitly understood well-founded order.

A ranking function maps program states into a well-founded set such that every

transition decreases the function’s value. As shown in Ben-Amram (2011), for every

terminating MCS, there exists a corresponding ranking function. However, these are

of exponential size in the worst case. Since our aim is NP complexity, we cannot use

that construction, but instead restrict ourselves to polynomially sized termination

witnesses. These witnesses, called ranking structures, are more flexible than ranking

functions and suffice for most practical termination proofs.

508 M. Codish et al.

Definition 5 (anchor, intermittent ranking function)

Let G be a MCS with state space St. Let (D,�) be a quasi-order and D+ a well-

founded subset of D. Consider a function Φ : St → D. We say that g ∈ G is a

Φ-anchor for G (or that g is anchored by Φ for G) if for every run p0(x̄0)
π0→ p1(x̄1)

π1→
. . .

πk−1→ pk(x̄k)
πk→ pk+1(x̄k+1), where both p0(x̄0)

π0→ p1(x̄1) and pk(x̄k)
πk→ pk+1(x̄k+1)

correspond to the transition rule g, we have Φ(pi(x̄i)) � Φ(pi+1(x̄i+1)) for all 0 � i � k,

where at least one of these inequalities is strict; and Φ(pi(x̄i)) ∈ D+ for some

0 � i � k. A function Φ that satisfies the above conditions is called an intermittent

ranking function (IRF).2

Example 6

Consider the transition rules from Example 4. Let G = {g1, g2} and let Φ1(p(x̄)) =

max(x2, x3) − x1. In any run built with g1 and g2, the value of Φ1 is nonnegative

at least in every state followed by a transition by g1. Moreover, a transition by g1

decreases the value strictly and a transition by g2 decreases it weakly. Hence, g1 is

anchored by Φ1 for G (in Section 3.2, we come back to this example and show how

Φ1 fits the patterns of termination proofs that our method is designed to discover).

Definition 7 (ranking structure)

Consider G and D as in Definition 5. Let Φ1, . . . ,Φm : St → D. Let G1 consist of all

transition rules g ∈ G where Φ1 anchors g for G. For 2 � i � m, let Gi consist of all

transition rules g ∈ G \ (G1 ∪ . . . ∪ Gi−1) where Φi anchors g in G \ (G1 ∪ . . . ∪ Gi−1).

We say that 〈Φ1, . . . ,Φm〉 is a ranking structure for G if G1 ∪ . . . ∪ Gm = G.

Note that by the above definition, for every g ∈ G, there is a (unique) Gi with g ∈ Gi.

We denote this index i as i(g) (i.e., g ∈ Gi(g) for all g ∈ G).

Example 8

For the program {g1, g2} of Example 4, a ranking structure is 〈Φ1,Φ2〉 with Φ1 as

in Example 6 and Φ2(p(x̄)) = x3 − x2. Here, we have i(g1) = 1 and i(g2) = 2. Later,

in Examples 18 and 27, we will extend the ranking structure to the whole program

{g1, g2, g3, g4}.

The concept of ranking structures generalizes that of lexicographic global ranking

functions used, e.g., in Ben-Amram and Codish (2008) and Alias et al. (2010). A

lexicographic ranking function is a ranking structure, however, the converse is not

always true, since the function Φ does not necessarily decrease on a transition rule,

which it anchors, and because Φ may assume values out of D+ in certain states.

Theorem 9

If there is a ranking structure for G, then G terminates.

Definition 10

A ranking structure 〈Φ1,Φ2, . . . ,Φm〉 for G is irredundant if for all j � m, there is a

transition g ∈ G such that i(g) = j.

It follows easily from the definitions that if there is a ranking structure for G, there

is an irredundant one, of length at most |G|.

2 The term “intermittent ranking function” is inspired by Manna and Waldinger (1978).

SAT-based termination using monotonicity constraints 509

3.2 Multiset orders and level mappings

The building blocks for our construction are four quasi-orders on multisets of

integers, and a notion of level mappings, which map program states into pairs of

multisets, whose difference (not set-theoretic difference; see Definition 15 below) will

be used to rank the states.3 The difference will be itself a multiset, and we now

elaborate on the relations that we use to order such multisets.

Definition 11 (multiset types)

Let ℘n(�) denote the set of multisets of integers of at most n elements, where n is

fixed by context.4 The μ-ordered multiset type, for μ ∈ { max,min, ms, dms }, is the

quasi-ordered set (℘n(�),�μ) where:

(1) (max order) S �max T holds iff max(S) � max(T), or T is empty; S �max T

holds iff max(S) > max(T), or T is empty while S is not.

(2) (min order) S �min T holds iff min(S) � min(T), or S is empty; S �min T holds

iff min(S) > min(T), or S is empty while T is not.

(3) (multiset order (Dershowitz and Manna 1979)) S �ms T holds iff T is obtained

by replacing a nonempty U ⊆ S by a (possibly empty) multiset V such that

U �max V ; the weak relation S �ms T holds iff S �ms T or S = T .

(4) (dual multiset order (Ben-Amram and Lee 2007)) S �dms T holds iff T is

obtained by replacing a submultiset U ⊆ S by a nonempty multiset V with

U �min V ; the weak relation S �dms T holds iff S �dms T or S = T .

Example 12

For S = {10, 8, 5}, T = {9, 5}: S �max T , T �min S , S �ms T , and T �dms S .

Definition 13 (well-founded subset of multiset types)

For μ ∈ { max,min, ms, dms }, we define (℘n(�),�μ)+ as follows: for min (respectively

max) order, the subset consists of the multisets whose minimum (respectively, max-

imum) is nonnegative. For ms and dms orders, the subset consists of the multisets

all of whose elements are nonnegative.

Lemma 14

For all μ ∈ {max,min, ms, dms}, (℘n(�),�μ) is a total quasi-order, with �μ its strict

part; and (℘n(�),�μ)+ is well founded.

For MCs over the integers, it is necessary to consider differences: in the simplest

case, we have a “low variable” x that is nondescending and a “high variable” y that

is nonascending, so y−x is nonascending (and will decrease if x or y changes). If we

also have a constraint like y � x, to bound the difference from below, we can use this

x y��

��
x′

��

y′

for ranking a loop (we refer to this situation as “the Π”—due to the

diagram on the right). In the more general case, we consider sets of

variables. We will search for a similar Π situation involving a “low

set” and a “high set.” We next define how to form a difference of two

sets so that one can follow the same strategy of “diminishing difference.”

3 A reader familiar with previous works using this term should note that here, a level mapping is not
in itself some kind of ranking function.

4 For MCSs, n is the maximum arity of program points.

510 M. Codish et al.

Definition 15 (multiset difference)

Let L,H be nonempty multisets with types μL, μH respectively. Their difference H−L
is defined in the following way, depending on the types (there are six cases):

(1) For μL ∈ {max,min}, H − L = {h− μL(L) | h ∈ H} and has the type of H .

(Here, μL(L) signifies min(L) or max(L) depending on the value of μL).

(2) For μL ∈ {ms, dms} and μH ∈ {min, max}, H − L = {μH (H) − � | � ∈ L} and has

type μL (where ms = dms and dms = ms).

For L and H such that H − L is defined, we say that the types of L and H are

compatible. We write H � L if the difference belongs to the well-founded subset.

Note that � relates multisets of possibly different types and is not an order

relation. Termination proofs do not require to define the difference of multisets

with types in {ms, dms}. To see why, observe that in “the Π,” only one multiset

must change strictly, and the nonstrict relations �ms, �dms are contained in �max,

�min, respectively. Note also that H � L is equivalent, in all relevant cases, to

μ1(H) � μ2(L) with μ1, μ2 ∈ {min, max}. The intuition into why multiset difference is

defined as above is rooted in the following lemma.

Lemma 16

Let L,H be two multisets of compatible types μL, μH , and let μD be the type of

H − L. Let L′, H ′ be of the same types as L,H respectively. Then,

H �μH H ′ ∧ L �μL L′ =⇒ H − L �μD H ′ − L′;

H �μH H ′ ∧ L �μL L′ =⇒ H − L �μD H ′ − L′;

H �μH H ′ ∧ L ≺μL L′ =⇒ H − L �μD H ′ − L′ .

Level mappings are functions that facilitate the construction of ranking structures.

Three types of level mappings are defined in Ben-Amram and Codish (2008):

numeric, plain, and tagged. In this paper, we focus on “plain” and “tagged” level

mappings and we adapt them for multisets of integers. Numeric level mappings

have become redundant in this paper due to the passage from ranking functions to

ranking structures. We first introduce the extension for plain level mappings.

Definition 17 (bimultiset level mapping, or “level mapping” for short)

Let G be a MCS. A bimultiset level mapping, fμL,μH maps each program state p(x̄) to

a pair of (possibly intersecting) multisets plowf (x̄) = { u1, . . . , ul } ⊆ x̄ and p
high
f (x̄) =

{ v1, . . . , vk } ⊆ x̄ with types indicated, respectively, by μL, μH ∈ { max,min, ms, dms }.
Only compatible pairs μL, μH are admitted. The selection of argument positions only

depends on the program point p.

Example 18

The following are the level mappings used (in Example 27) to prove termina-

tion of the program of Example 4. Here, each program point p is mapped to

〈plowf (x̄), phighf (x̄)〉.
f1
min,max(p(x̄)) = 〈{ x1 } , { x2, x3 }〉
f1
min,max(q(x̄)) = 〈{ x1 } , { x2 }〉

f2
min,max(p(x̄)) = 〈{ x2 } , { x3 }〉
f2
min,max(q(x̄)) = 〈{ } , { }〉

SAT-based termination using monotonicity constraints 511

We now turn to tagged level mappings. Assume the context of Definition 17 and

let M denote the sum of the arities of all program points. A tagged bimultiset level

mapping is just like a bimultiset level mapping, except that set elements are pairs of

the form (x, t), where x is from x̄ and t < M is a natural constant, called a tag. We

view such a pair as representing the integer value Mx+ t (recall that x is an integer).

This transforms tagged multisets into multisets of integers, so Definitions 15 and 17,

and the consequent definitions and results can be used without change.

Tags “prioritize” certain argument positions and can usefully turn weak inequal-

ities into strict ones. For example, consider a transition rule p(x̄) :– x1 > y1, x1 �
y2, . . . ; p(ȳ). The tagged set {(x1, 1), (x2, 0)} is strictly greater (in ms order as well

as in max order) than {(y1, 1), (y2, 0)} (because π |= (x1, 1) > (y2, 0)). The plain sets

{x1, x2} and {y1, y2} do not satisfy these relations. Thus, tagging may increase the

chance of finding a termination proof. We do not have any fixed rule for tagging;

our SAT-based procedure will find a useful tagging if one exists. In the remainder,

we write “level mapping” to indicate a, possibly tagged, bimultiset level mapping.

Level mappings are applied in termination proofs to express the diminishing

difference of their low and high sets. To be useful, we also need to express a

constraint relating the high and low sets, providing, figuratively, the horizontal bar

of “the Π.” A transition rule that has such a constraint is called bounded.

Definition 19 (bounded)

Let G be a MCS, f be a level mapping,5 and g ∈ G. A transition rule g =

p(x̄) :– π; q(ȳ) in G is called bounded w.r.t. f if π |= p
high
f � plowf .

Definition 20 (orienting transition rules)

Let f be a level mapping. (1) f orients transition rule g = p(x̄) :– π; q(ȳ) if

π |= p
high
f (x̄) � q

high
f (ȳ) and π |= plowf (x̄) � qlowf (ȳ); (2) f orients g strictly if, in

addition, π |= p
high
f (x̄) � q

high
f (ȳ) or π |= plowf (x̄) ≺ qlowf (ȳ).

Example 21

We refer to Example 4 and the level mapping f1
min,max from Example 18. Function

f1
min,max orients all transition rules, where g1 and g3 are oriented strictly; g1 and g4

are bounded w.r.t. f1
min,max (the reader may be able to verify this by observing the

constraints; however, later we explain how our algorithm obtains this information).

Corollary 22 (of Definition 20 and Lemma 1)

Let f be a level mapping and define Φf(p(x̄)) = p
high
f (x̄) − plowf (x̄). If f orients

g = p(x̄) :– π; q(ȳ) , then π |= Φf(p(x̄)) � Φf(q(ȳ)); and if f orients g strictly, then

π |= Φf(p(x̄)) � Φf(q(ȳ)).

The next theorem combines orientation and bounding to show how a level

mapping induces anchors. Note that we refer to cycles in the CFG also as “cycles

in G,” as the CFG is implicit in G.

5 We sometimes write f (for short) instead of fμL,μH .

512 M. Codish et al.

Theorem 23

Let G be a MCS and f be a level mapping. Let g = p(x̄) :– π; q(ȳ) be such that

every cycle C, including g, satisfies these conditions: (1) all transitions in C are

oriented by f, and at least one of them strictly; (2) at least, one transition in C is

bounded w.r.t. f. Then, g is a Φf-anchor for G, where Φf(p(x̄)) = p
high
f (x̄) − plowf (x̄).

Definition 24 (MCNP anchors and ranking functions)

Let G be a MCS and f be a level mapping. We say that g is a MCNP-anchor for

G w.r.t. f if f and g satisfy the conditions of Theorem 1. The function Φf is called

a MCNP (intermittent) ranking function (MCNP IRF).

Note that if g is not included in any cycle, then the definition is trivially satisfied

for any f. Indeed, such transition rules are removed by our algorithm without

searching for level mappings at all.

Example 25

The facts in Example 21 imply that g1, g3, and g4 are MCNP-anchors w.r.t. f1
min,max.

We remark that numerous termination proving techniques follow the pattern of,

repeatedly, identifying and removing anchors. However, typically, the function Φ

used for ranking is required to be strictly decreasing, and bounded, on the anchor

itself, which (at least implicitly) means that a lexicographic ranking function is being

constructed (see, e.g., Colón and Sipma (2002)). The anchor criterion expressed in

Theorem 1 (inspired by Giesl et al. (2007, Theorem 8)) is more powerful. We note

that the difference is only important with non-well-founded domains. When the

ranking is only done with orders that are a priori well founded, as, for example,

in Giesl et al. (2006) and Hirokawa and Middeldorp (2005), considering the strictly

oriented transitions as anchors is sufficient. In comparison to Giesl et al. (2007), we

note that they do not use the concept of anchors and propose an algorithm, which

can generate an exponential number of level-mapping-finding subproblems (whereas

ours generates, in the worst case, as many problems as there are transition rules).

4 The MCNP problem

In this section, we present necessary and sufficient conditions for orientability and

boundedness. On the basis of these, we conclude that proving termination with

MCNP IRFs is in NP. This also forms the basis for our SAT-based algorithm in

Section 5.

Definition 26 (MCNP)

A system of monotonicity constraints is in MCNP if it has a ranking structure

which is a tuple of MCNP IRFs.

It follows from Theorem 1, that if a MCS is in MCNP, then it terminates.

Example 27

Consider again Example 4 and the level mappings from Example 18. Then, 〈Φf1 ,Φf2〉
is a ranking structure for G. As already observed, g1, g3, and g4 are MCNP-anchors

for f1. Observe now that f2 is both strict and bounded on g2.

SAT-based termination using monotonicity constraints 513

Ranking structures are constructed through iterative search for suitable level

mappings that prescribe pairs of (possibly tagged) multisets of arguments, which

must satisfy relations of the form �μ, �μ, and �.

Let g = p(x̄) :– π; q(ȳ) and S , T be nonempty sets of (tagged) argument positions

of p or of q. We show how to check for each μ ∈ { max,min, ms, dms } if π |= S �μ T .

Viewing g as a graph (as in Example 4), let gt denote the transpose of g (obtained by

inverting the arcs). While tagged level mappings can be represented as “ordinary”

bimultiset level mappings (as indicated in Section 3.2), for their SAT encoding, it is

advantageous to represent the orders on tagged pairs explicitly:

π |= (x, i) > (y, j) ⇐⇒ (π |= x > y) ∨ ((π |= x � y) ∧ i > j),

π |= (x, i) � (y, j) ⇐⇒ (π |= x > y) ∨ ((π |= x � y) ∧ i � j).
(1)

Below, x, y either both represent arguments, or both represent tagged arguments,

with relations x > y, x � y interpreted accordingly.

(1) max order: (S �max T) every y ∈ T must be “covered” by an x ∈ S such that

π |= x � y. Strict descent requires S 	= ∅ and x > y.

(2) min order: (S �min T) same conditions but on gt (now T covers S).

(3) multiset order: (S �ms T) every y ∈ T must be “covered” by an x ∈ S such that

π |= x � y. Furthermore, each x ∈ S either covers each related y strictly (x > y)

or covers at most a single y. Descent is strict if there is some x that participates

in strict relations.

(4) dual multiset order: (S �dms T) same conditions but on gt (now T covers S).

We also show how to decide if the relation H � L holds: for μL, μH ∈ {max,min}
and μL = μH , H � L holds iff μH (H) � μL(L).6 For μL = min and μH ∈ {ms, dms},
H � L holds iff H �min L. For μL ∈ {ms, dms} and μH = max, H � L holds iff

H �max L. For μL = max and μH ∈ {ms, dms}, H � L holds if min(H) � max(L). For

μL ∈ {ms, dms} and μH = min, H � L holds if min(H) � max(L).

Since the above conditions allow for verification of a proposed MCNP ranking

structure in polynomial time, we obtain the following theorem.

Theorem 28

MCNP is in NP.

5 A SAT-based MCNP algorithm

Given that MCNP is in NP, we provide a reduction (an encoding) to SAT, which

enables us to find termination proofs using an off-the-shelf SAT solver. We invoke a

SAT solver iteratively to generate level mappings and construct a ranking structure

〈Φ1,Φ2, . . . ,Φm〉. Our main algorithm is presented in Section 5.1. Section 5.2 discusses

how to find appropriate level mappings and Section 5.3 introduces the SAT encoding.

6 Note that checking this amounts to checking for �μ in the case μL = μH = μ; for the other cases,
max(H) � min(L) holds if there is at least one arc from an H vertex to an L vertex; min(H) � max(L)
holds if there is an arc from every H vertex to every L vertex.

514 M. Codish et al.

5.1 Main algorithm

Given a MCS G, the idea is to iterate as follows: while G is not empty, find a level

mapping f inducing one or more anchors for G. Remove the anchors, and repeat.

The instruction “find a level mapping” is performed using a SAT encoding (for each

of the compatible pairs of multiset orders). To improve performance, the algorithm

follows the strongly connected components (SCCs) decomposition of (the CFG of)

G. This leads to smaller subproblems for the SAT solver and is justified by the

observation that intercomponent transitions are trivially anchors (not included in

any cycle). In the following, let scc(G) denote the set of nonvacant SCCs of G (that

is, SCCs, which are not a vertex without any arcs).

Main Algorithm.

input: G (a MCS)

output: ρ = 〈f1, f2, . . .〉 (tuple of level mappings such that 〈Φf1 ,Φf2 , . . .〉
is a ranking structure for G). The algorithm aborts if G is not in MCNP.

(1) ρ = 〈 〉 (empty queue); S = scc(G) (stack with nonvacant SCCs of G);

(2) while (S 	= ∅)

• pop C from S (a MCS) and find (using SAT) a level mapping

f to anchor some transition rules in C (if none, abort: C /∈ MCNP),

• extend f to program points p not in C by f(p(x̄)) = 〈∅, ∅〉,
• append f to ρ and remove from C the Φf-anchors that were found,

• push elements of scc(C) to S;

(3) return ρ

Theorem 29

The main algorithm succeeds if and only if G is in MCNP.

5.2 Finding a level mapping

The main step in the algorithm is to find a level mapping, which anchors some

transition rules of a strongly connected MCS. Let G be strongly connected and f be

a level mapping that orients all transition rules in G, strictly orients the transition

rules from a nonempty set S ⊆ G, and where B ⊆ G (nonempty) are bounded.

Following Theorem 1, a transition rule g is an anchor if every cycle in G containing

g has an element from S and an element from B. We need to check all cycles in G
(possibly exponentially many). We describe a way of doing so by numbering nodes,

which lends itself well to a SAT-based solution.

Definition 30 (node numbering)

A node numbering is a function num from n program points to { 1, . . . , n }. For

g = p(x̄) :– π; q(ȳ), we denote Δnum(g) = num(q) − num(p). For a set H ⊆ G, we

say that num agrees with H if for all g ∈ G: Δnum(g) > 0 ⇒ g ∈ H.

Now, for g ∈ G, checking that every cycle of G containing g also contains an

element of S , is reduced to finding a node numbering numS with ΔnumS (g) 	= 0

that agrees with S . Then, any cycle containing g must contain also an edge g′ with

ΔnumS (g
′) > 0. But this implies that g′ ∈ S because numS agrees with S .

SAT-based termination using monotonicity constraints 515

Lemma 31

Let G, f, S , and B be as above. Then, g ∈ G is a MCNP-anchor for G w.r.t f if and

only if: (1) g ∈ S ∩ B; or (2) there are node numberings numS and numB agreeing

with S and B, respectively, such that ΔnumS (g) 	= 0 and ΔnumB(g) 	= 0.

Example 32

We now describe the application of the Main Algorithm to Example 4. Initially,

there is a single SCC, C = G. Using SAT solving (as described in Section 5.3),

we find that level mapping f1 of Example 18 orients all transitions, strictly orients

S = {g1, g3} and is bounded on B = {g1, g4}. Hence, by choosing the numbering

numB(p) = 2, numB(q) = 1, numS (p) = 1, numS (q) = 2, we obtain that g1, g3, and

g4 are anchors. Note that the problem encoded to SAT represents the choice of the

level mapping and node numbering at once. Now, ρ is set to 〈f1〉, and the anchors

are removed from C, leaving a SCC consisting of point p and transition rule g2. In

a second iteration, level mapping f2 of Example 18 is found and appended to ρ. No

SCC remains, and the algorithm terminates.

Note that our algorithm is nondeterministic (due to leaving some decisions to the

SAT solver). In this example, the first iteration could come up with the numbering

numB(p) = numB(q) = 1, which would cause only g1 to be recognized as an anchor.

Thus, another iteration would be necessary, which would find a numbering according

to which g3 and g4 are anchors, since this time there is no other option.

5.3 A SAT encoding

Let G be a strongly connected MCS (assume the context of the Main Algorithm

of Section 5.1). For a compatible pair μL, μH , we construct a propositional formula

ΦG
μL,μH

, which is satisfiable iff there exists a level mapping fμL,μH that anchors some

transition rules in G. We focus on tagged level mappings (omitting tags is the same

as assigning them all the same value).

Each program point p and argument position i is associated with an integer

variable tagip. Integer variables are encoded through their bit representation. In

the following, we write, for example, ||n > m|| to indicate that the relation n >

m on integer variables is encoded to a propositional formula in CNF. Let g =

p(x̄) :– π; q(ȳ) and consider each a, b ∈ x̄ ∪ ȳ. At the core of the encoding, we

use a formula ϕ
g
rel , which introduces a propositional variable e

g
a>b to specify a

corresponding “tagged edge”, ega>b ↔ π |= (a, tag1) > (b, tag2), as prescribed in

equation (1). Here, tag1 and tag2 are the integer tags associated with the program

points and argument positions of a and b (in g). We proceed likewise for the

propositional variable ega�b.

Example 33

Consider g3 = p(x1, x2, x3) :– y1 > x1, x2 � y2; q(y1, y2) from Example 4. The formula

ϕ
g3

rel contains (among others) the following conjuncts. From (y1 > x1), (eg3
y1>x1

↔
true) and (eg3

y1�x1
↔ true); from (x2 � y2), (eg3

x2>y2
↔ ||tag2

p > tag2
q ||) and (eg3

x2�y2
↔

||tag2
p � tag2

q ||). Observe also, eg3
x1>y2

↔ false and eg3

x1�y2
↔ false.

516 M. Codish et al.

We introduce the following additional propositional variables:

• weakg ⇔ g oriented weakly by fμL,μH
• strictg ⇔ g oriented strictly by fμL,μH
• boundg ⇔ p

high
f (x̄) � plowf (x̄)

• anchorg ⇔ g is an anchor w.r.t. f in G

• weak
g
low ⇔ qlowf (ȳ) �μL plowf (x̄)

• strict
g
low ⇔ qlowf (ȳ) �μL plowf (x̄)

• weak
g
high⇔p

high
f (x̄) �μH q

high
f (ȳ)

• strict
g
high⇔p

high
f (x̄) �μH q

high
f (ȳ)

and, for every program point r, two integer variables numr
S and numr

B to represent

the node numberings from Definition 30.

Our encoding takes the following form:

ΦG
μL,μH

=

⎛
⎝∧
g∈G

weakg

⎞
⎠ ∧

⎛
⎝∨
g∈G

anchorg

⎞
⎠ ∧

(
ϕG
rel ∧ ψG ∧ ψG

pos ∧ ψG
low∧

∧ ψG
high ∧ ψG

bound ∧ ψG
ne

)
.

The first two conjuncts specify that fμL,μH is a level mapping, which orients G, the

third is specified as ϕG
rel =

∧
g∈G ϕ

g
rel , and the rest are explained below:

Proposition ψG imposes the intended meanings on weakg , strictg , and anchorg (see

Definition 20 and Lemma 1).

ψG =
∧

g= p(x̄):– π; q(ȳ)

⎛
⎜⎝

weakg ↔ (weakglow ∧ weakghigh) ∧
strictg ↔ (weakg ∧ (strictglow ∨ strictghigh)) ∧
anchorg ↔ ((p 	= q) ∧ (||numpS 	= num

q
S || ∧ ||numpB 	= num

q
B ||)) ∨

((p = q) ∧ strictg ∧ boundg)

⎞
⎟⎠ .

Proposition ψG
pos enforces that the node numberings numS and numB agree with sets

S and B, cf. Lemma 1:

ψG
pos =

∧
g= p(x̄):– π; q(ȳ)

(
(||numpS < num

q
S || → strictg) ∧

(||numpB < num
q
B || → boundg)

)
.

Proposition ψG
high imposes that weakghigh and strictghigh are true exactly when phighf (x̄) �μH

q
high
f (ȳ) and phighf (x̄) �μH q

high
f (ȳ), respectively. We focus on the case when μH = max,

the other cases are similar and omitted for lack of space. The encoding of proposition

ψG
low is similar (and also omitted for lack of space).

ψG
high =

∧
g= p(x̄):– π; q(ȳ)

⎛
⎜⎜⎜⎝
weak

g
high ↔

∧
1�j�m

(
q
high
j →

∨
1�i�n

(phighi ∧ egxi�yj)
)

∧

strict
g
high ↔

∧
1�j�m

(
q
high
j →

∨
1�i�n

(phighi ∧ egxi>yj)
)

∧
∨

1�i�n

p
high
i

⎞
⎟⎟⎟⎠ .

The propositional variables plowi , phighi , qlowj , and qhighj (1 � i � n, 1 � j � m) indicate

the argument positions of p/n and q/m selected by the level mapping fμL,μH for the

low and high sets, respectively. The first subformula specifies that a transition rule

is weakly oriented by the max order if for each j where qhighj is selected (i.e., the jth

argument of q is in qhigh), at least one of the selected positions phighi has to “cover”

q
high
j with a weak constraint xi � yj . The second subformula is similar for the case

of strict orientation with the additional requirement that at least one phighi should be

selected.

SAT-based termination using monotonicity constraints 517

Proposition ψG
bound constrains boundg to be true iff p

high
f � plowf is satisfied by g. As

observed in Section 4, this test boils down to four cases. We illustrate the encoding

for the case min(phighf (x̄)) � max(plowf (x̄)):

ψG
bound =

∧
g= p(x̄):– π; q(ȳ)

⎛
⎝boundg ↔

∧
1�i�n,1�j�n

(
(phighi ∧ plowj) → e

g
xi�xj

)⎞
⎠ .

Proposition ψG
ne constrains the level mapping so that for each program point p, the

sets plow and phigh are not empty. Let P denote the set of program points in G.

ψG
ne =

∧
p∈P

((∨
1�i�n

plowi

)
∧

(∨
1�i�n

p
high
i

))
.

6 Implementation and experiments

We implemented a termination analyzer based on our SAT encoding for MCNP

and tested it on three benchmark suites. Experiments were conducted running

the SAT4J (Le Berre and Parrain 2010) solver on an Intel Core i3 at 2.93 GHz

with 2 GB RAM. For further details on our experiments see Appendix B and

http://aprove.informatik.rwth-aachen.de/eval/MCNP.

Suite 1 consists of 81 MCSs obtained from various research papers on termination

and from abstracting textbook style C programs.7 MCNP proves 66 of them

terminating with an average runtime of 0.55 s (maximal runtime is 5.15 s). This

suite contains the 32 examples from the evaluation of Fuhs et al. (2009). That

paper introduced integer term rewrite systems (ITRSs), where standard operations

on integers are predefined, and showed how to use a rewriting-based termination

prover like AProVE for algorithms on integers. MCNP shows termination of 27 of

these. AProVE8 proves termination of these 27 and one more example. On the 32

examples from Fuhs et al. (2009), the average runtime of MCNP is 0.22 s, whereas

the average runtime of AProVE is 5.3 s for the examples with no timeout (AProVE

times out after 60 s on four examples). This shows that MCNP is sufficiently

powerful for representative programs on integers and demonstrates the efficiency

of our SAT-based implementation. The comparison with AProVE on the examples

from Fuhs et al. (2009) indicates that MCNP has about the same precision and is

significantly faster.

Suite 2 originates from the JBC programs in the JBC and JBC Recursive categories

of the International Termination Competition 2010.9 One hundred sixty-five MCS

instances were obtained by first applying the preprocessor of the termination analyzer

COSTA (Albert et al. 2008) resulting in (binary clause) constraint logic programs

7 Using a translator developed by A. Ben-Shabtai and Z. Mann at Tel-Aviv Academic College.
8 Using an Intel Core 2 Quad CPU Q9450 at 2.66 GHz with 8 GB RAM.
9 In this competition, AProVE, COSTA, and Julia competed against each other.

See http://www.termination-portal.org/wiki/Termination_Competition for details.

518 M. Codish et al.

with linear constraints. After minor processing, these are abstracted to MCSs

(applying SWI Prolog with its library for CLPQ (constraint logic programming

with linear constraints). MCNP provides a termination proof for 92 of these with

an average runtime of 0.66 s (maximal runtime is 16.31 s). In contrast, COSTA10

shows termination of 102 programs. However, it encounters a (120 s) timeout on

five instances. COSTA’s average runtime for the examples with no timeout is 0.076

s. From these experiments, we see that although MCNP is based on very simple

ranking functions, it is able to provide many of the proofs and does not encounter

timeouts. Moreover, there are five programs where MCNP provides a proof and

COSTA does not (four due to timeouts).

Suite 3. Here, the Competition 2010 version of the termination analyzer AProVE

abstracts JBC programs from the (nonrecursive) JBC category of the Termination

Competition 2010 to ITRSs. (This abstraction from Brockschmidt et al. (2010) and

Otto et al. (2010) only works for programs without recursion.) To further transform

ITRSs into MCSs, we apply an abstraction that maps terms to their size and

replaces nonlinear arithmetic subexpressions by fresh variables. This results in a

CLPQ representation, which is further abstracted to MCSs as for Suite 2. For the

resulting 127 instances, MCNP provides 63 termination proofs, eight timeouts after

60 s, and an average runtime of 5.76 s (we count timeouts as 60 s). To compare, we

apply AProVE directly11 but fix the abstraction to be the same as in the preprocessor

for MCNP. This results in 73 termination proofs and eight timeouts with an average

time of 14.16 s. There are five instances where MCNP provides a proof not found

by AProVE. Applying AProVE without fixing the abstraction gives 95 termination

proofs, 19 timeouts, and an average time of 17.12 s (there are still three instances

where MCNP provides a proof not found by AProVE). This shows that the additional

proving power in AProVE comes primarily from the search for the right abstraction.

Once fixing the abstraction, MCNP is of similar precision and much faster. Thus,

it could be fruitful to use a combination of tools where the MCNP analyzer is

tried first and the rewrite-based analyzer is only applied for the remaining “hard”

examples.

7 Conclusion

We introduced a new approach to prove termination of MC transition systems. The

idea is to construct a ranking structure, of a novel kind, extending previous work

in this area. To verify whether a MCS has such a ranking structure, we use an

algorithm based on SAT solving. We implemented our algorithm and evaluated it

in extensive experiments. The results demonstrate the power of our approach and

show that its integration into termination analyzers for JBC advances the state of

the art of automated termination analysis.

10 Experiments for COSTA were performed on an Intel Core i5 at 3.2 GHz with 3 GB RAM.
11 Using an Intel Xeon 5140 at 2.33 GHz with 16 GB RAM and imposing a time limit of 60 s.

SAT-based termination using monotonicity constraints 519

Acknowledgement

We thank Samir Genaim for help with the benchmarking. This paper is supported

by the G.I.F. grant 966-116.6. Part of Amir M. Ben-Amram’s work was carried out

while visiting DIKU, the University of Copenhagen.

References

Albert, E., Arenas, P., Codish, M., Genaim, S., Puebla, G. and Zanardini, D. 2008.

Termination analysis of Java Bytecode. In Proc. of the International Conference on Formal

Methods for Open Object-Based Distributed Systems (FMOODS ’08). Lecture Notes in

Computer Science, vol. 5051. Springer-Verlag, Berlin, 2–18.

Alias, C., Darte, A., Feautrier, P. and Gonnord, L. 2010. Multi-dimensional rankings,

program termination, and complexity bounds of flowchart programs. In Proc. of the

International Symposium on Static Analysis (SAS ’10). Lecture Notes in Computer Science,

vol. 6337. Springer-Verlag, Berlin, 117–133.

Avery, J. 2006. Size-change termination and bound analysis. In Proc. of the International

Symposium on Functional and Logic Programming (FLOPS ’06). Lecture Notes in Computer

Science, vol. 3945. Springer-Verlag, Berlin, 192–207.

Ben-Amram, A. M. 2009. A complexity tradeoff in ranking-function termination proofs. Acta

Informatica 46(1), 57–72.

Ben-Amram, A. M. Monotonicity constraints for termination in the integer domain.

Accepted for publication in Logical Methods of Computer Science. URL: http://arxiv.org/

abs/1105.6317.

Ben-Amram, A. M. and Codish, M. 2008. A SAT-based approach to size-change termination

with global ranking functions. In Proc. of the International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS ’08). Lecture Notes in

Computer Science, vol. 4963. Springer-Verlag, Berlin, 218–232.

Ben-Amram, A. M. and Lee, C. S. 2007. Size-change analysis in polynomial time. ACM

Transactions on Programming Languages and Systems 29(1), 5:1–5:37.

Brockschmidt, M., Otto, C., von Essen, C. and Giesl, J. 2010. Termination graphs for

Java Bytecode. In Verification, Induction, Termination Analysis. Lecture Notes in Artificial

Intelligence, vol. 6463. Springer-Verlag, Berlin, 17–37.

Codish, M., Lagoon, V. and Stuckey, P. J. 2005. Testing for termination with monotonicity

constraints. In Proc. of the International Conference on Logic Programming (ICLP ’05).

Lecture Notes in Computer Science, vol. 3668. Springer-Verlag, Berlin, 326–340.

Codish, M., Lagoon, V. and Stuckey, P. J. 2006. Solving partial order constraints for

LPO termination. In Proc. of the International Conference on Rewriting Techniques and

Applications (RTA ’06). Lecture Notes in Computer Science, vol. 4098. Springer-Verlag,

Berlin, 4–18.

Codish, M. and Taboch, C. 1999. A semantic basis for termination analysis of logic programs.

Journal of Logic Programming 41(1), 103–123.

Colón, M. and Sipma, H. 2002. Practical methods for proving program termination. In Proc.

of the International Conference on Computer Aided Verification (CAV ’02). Lecture Notes

in Computer Science, vol. 2404. Springer-Verlag, Berlin, 442–454.

Dershowitz, N., Lindenstrauss, N., Sagiv, Y. and Serebrenik, A. 2001. A general

framework for automatic termination analysis of logic programs. Applicable Algebra in

Engineering, Communication and Computing 12(1–2), 117–156.

Dershowitz, N. and Manna, Z. 1979. Proving termination with multiset orderings.

Communications of the ACM 22(8), 465–476.

520 M. Codish et al.

Fuhs, C., Giesl, J., Plücker, M., Schneider-Kamp, P. and Falke, S. 2009. Proving

termination of integer term rewriting. In Proc. of the International Conference on Rewriting

Techniques and Applications (RTA ’09). Lecture Notes in Computer Science, vol. 5595.

Springer-Verlag, Berlin, 32–47.

Giesl, J., Thiemann, R., Schneider-Kamp, P. and Falke, S. 2006. Mechanizing and improving

dependency pairs. Journal of Automated Reasoning 37(3), 155–203.

Giesl, J., Thiemann, R., Swiderski, S. and Schneider-Kamp, P. 2007. Proving termination

by bounded increase. In Proc. of the International Conference on Automated Deduction

(CADE ’07). Lecture Notes in Artificial Intelligence, vol. 4603. Springer-Verlag, Berlin,

443–459.

Hirokawa, N. and Middeldorp, A. 2005. Automating the dependency pair method.

Information and Computation 199(1–2), 172–199.

Le Berre, D. and Parrain, A. 2010. The SAT4J library, release 2.2, system description.

Journal on Satisfiability, Boolean Modeling and Computation 7, 59–64.

Lee, C. S., Jones, N. D. and Ben-Amram, A. M. 2001. The size-change principle for

program termination. In Proc. of the ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL ’01). ACM Press, 81–92.

Lindenstrauss, N. and Sagiv, Y. 1997. Automatic termination analysis of Prolog programs.

In Proc. of the International Conference on Logic Programming (ICLP ’97). MIT Press,

64–77.

Lindenstrauss, N., Sagiv, Y. and Serebrenik, A. 2004. Proving termination for logic

programs by the query-mapping pairs approach. In Program Development in Computational

Logic: A Decade of Research Advances in Logic-Based Program Development. Lecture Notes

in Computer Science, vol. 3049. Springer-Verlag, Berlin, 453–498.

Manna, Z. and Waldinger, R. 1978. Is “sometime” sometimes better than “always”?

Communications of the ACM 21, 159–172.

Manolios, P. and Vroon, D. 2006. Termination analysis with calling context graphs. In Proc.

of the International Conference on Computer-Aided Verification (CAV ’06). Lecture Notes

in Computer Science, vol. 4144. Springer-Verlag, Berlin, 401–414.

Otto, C., Brockschmidt, M., von Essen, C. and Giesl, J. 2010. Automated termination

analysis of Java Bytecode by term rewriting. In Proc. of the International Conference on

Rewriting Techniques and Applications (RTA ’10). Leibniz International Proceedings in

Informatics, vol. 6. Dagstuhl, Germany, 259–276.

Serebrenik, A. and De Schreye, D. 2004. Inference of termination conditions for numerical

loops in Prolog. Theory and Practice of Logic Programming 4(5–6), 719–751.

Spoto, F., Mesnard, F. and Payet, E. 2010. A termination analyser for Java Bytecode based

on path-length. ACM Transactions on Programming Languages and Systems 32(3), 8:1–8:7.

