
General Size-Change Termination and

Lexicographic Descent�

Amir M. Ben-Amram��

The Academic College of Tel-Aviv Yaffo
Tel-Aviv, Israel

amirben@mta.ac.il

Abstract. Size-change termination (SCT) is a general criterion to iden-
tify recursive function definitions that are guaranteed to terminate. It ex-
tends and subsumes the simpler criterion of lexicographic descent in func-
tion calls, which in classical recursion theory is known as multiple recur-
sion. Neil Jones has conjectured that the class of functions computable by
size-change terminating programs coincides with the multiply-recursive
functions. This paper proves so.

1 Introduction

Consider the following recursive function definition (over the natural numbers —
as are all function definitions in this paper). Is computation of this function, by
straight-forward evaluation of the defining expressions, guaranteed to terminate?

f(x,y) = if x=0 then y

else f(x-1, y+1)

The answer is clrealy positive. In fact, f has been defined by primitive re-
cursion, a form of recursion which always terminates. In this paper, we take
a programming view of function definitions, rather than an abstract equational
view; more precisely, we consider a definition as above to be a program in a first-
order pure-functional language, with the natural semantics. Thus, we say that
the occurrence of f on the right-hand side represents a call of f to itself. If all
uses of recursion in the program conform to the primitive recursion scheme, and
the built-in operators of the language are appropriate, the functions computable
will span the class of primitive recursive functions.

A well-known example of a recursively-defined function which is total but
not primitive recursive is Ackermann’s function:

� A revised version of a paper published in LNCS, Vol. 2566, including
an error correction and an additional example. Please refer to the pub-
lished version in citations, also pointing out the corrected version if possible.

��Part of this research was done while the author was visiting DIKU, the Department
of Computer Science at the University of Copenhagen, with support from DART, a
project under the Danish Research Councils.

1



A(m,n) = if m=0 then n+1

else if n=0 then A(m-1, 1)

else A(m-1, A(m,n-1))

The termination of this computation can be proved by observing that the pair
of arguments descends lexicographically in every recursive call. This lexicographic
descent criterion is quite useful in proving termination of functional programs;
in recursion theory, the set of functions obtained by recursive definitions of this
kind is known as the multiply-recursive functions (a more precise definition, in
programming terms, appears in Section 2; the classical Recursion-Theoretical
reference is Péter [3]). Multiply-recursive definitions extend primitive-recursive
ones in two essential ways. First, they use lexicographic descent of a tuple of
parameter values as termination guarantee, rather than insisting that the same
parameter decrease on every call. Secondly, they allow multiple recursive calls
within a definition, which can also nest, as is the case with Ackermann’s function.
Consider now the following examples:

p(m,n,r) = if r>0 then p(m, r-1, n)

else if n>0 then p(r, n-1, m)

else m

g(x,y) = if t=0 then x

else if x=0 then g(y, y-1)

else g(y, x-1)

Both programs do not satisfy the lexicographic descent criterion, but nonethe-
less, the termination of these functions can be inferred from the obvious rela-
tions between parameter values of calling and called functions. In fact, these
programs satisfy the SCT (size-change termination) criterion as formulated by
Neil Jones [2]1. Briefly, satisfaction of this criterion means that if an infinite
sequence of recursive calls were possible in a computation, some value would de-
crease infinitely many times, which is impossible. As is the case with the above
examples, this value may meander among parameter positions, and not neces-
sarily decrease in every call. SCT also handles mutual recursion naturally, as
will be seen from the precise definition in Section 2. SCT clearly subsumes prim-
itive recursion, in which the recursion parameter must decrease in every call; it
also subsumes multiple recursion (and does so without reference to lexicographic
descent).

Thus, programs satisfying SCT form a superset of multiply-recursive function
definitions. But is the class of functions that can be computed by such programs
larger? Neil Jones has conjectured (in private communication) that these classes
coincide. This paper proves that his conjecture is correct.

1 There is earlier work by Sagiv and Lindenstrauss, that used essentially the same idea
for termination proofs, see [4, 5].

2



2 Definitions

2.1 Programs

We consider programs written in a simple, first-order functional language, with a
standard call-by-value semantics (a formal definition can be found in [2] but the
reader can probably skip it). The only fine detail in the semantics definition is
the handling of an “erroneous” expression like x-1 when x is zero (recall that we
compute over natural numbers). In [2] we consider the result of evaluating this
expression to be a special error value, that essentially aborts the computation.
This is a programming-oriented definition, that preserves (even for programs
with bugs) the correctness of the basic termination argument, namely that a
call sequence that repeatedly replaces x with x-1 must lead to termination.

As in classical recursion theory, the natural numbers will be the only data
type in our programs. For practical purposes, size-change termination arguments
are also applied to programs using other data types, most notably structures like
lists and trees. We note, however, that in analysing a program using such data,
a mapping into natural numbers (such as size or height) is typically used in
order to argue that recursive calls involve descent. Hence, the essence of the
termination arguments is captured completely by working with numbers, with
the descent in question relating to the natural order on the natural numbers.

Some notations: the The parameters of function f are named, for uniqueness,
Param(f) = {f(1), f(2), . . .} (though in examples, we prefer to use identifiers as
in ordinary programming). We thus consider a parameter name to identify its
function uniquely. The set of all parameters in program p is Param(p). The initial
function, denoted finitial , is the entry point of the program, i.e., the function
whose termination we wish to prove. We assume that every function in our
program is reachable from finitial . Call sites in a function body are identified by
(unique) labels. If a call c to function g occurs in the body of f, we write c : f → g,

or alternatively, f
c→ g. A finite or infinite sequence of calls cs = c1c2c3 . . . is

well-formed if the target function of ci coincides with the source function of ci+1,
for every i.

We do not fix the set of primitive operators available to the program; the
successor and predecessor operations, as well as comparison to zero, are necessary
and sufficient for computing all multiply-recursive functions, but when writing
programs it may be convenient to employ other operators, e.g., subtraction or
addition. We do make the (quite natural) assumption that all such operators
are primitive recursive, so their presence will not affect the class of computable
functions.

2.2 Size-change Graphs

In basic definitions of primitive and multiple recursion the only operator assumed
to guarantee descent is the predecessor; however in practice one often makes use

3



of other operators and of knowledge about them. For instance, we may make use
of the fact that x− y ≤ x to prove termination of the following program:2

h(m,n) = if m=0 then n

else if n=0 then h(m-1, n)

else h(m-n, n-1)

The definition of SCT in [2] is made very general by viewing such knowledge
about properties of operators or auxiliary functions as part of the problem data.
Put otherwise, SCT is defined not as a property of a program per se but of
a program annotated with size-change information, in the form of size-change
graphs, defined in the following subsections. Since these definitions are the same
as in [2], a reader familiar with the latter may wish to skip to Sec. 2.4.

Definition 2.1. A state is a pair (f,v), where v is a finite sequence of integers
corresponding to the parameters of f.
A state transition (f,v)

c→ (g,u) is a pair of states connected by a call. It
is required that call c : g(e1, . . . , en) actually appear in f’s body, and that u =
(u1, . . . , un) be the values obtained by expressions (e1, . . . , en) when f is evaluated
with parameter values v.

Definition 2.2. Let f, g be function names in program p. A size-change graph
from f to g, written G : f → g, is a bipartite graph from Param(f) to Param(g),
with arcs labeled with either ↓ or ↓=. Formally, the arc set E of G is a subset

of Param(f) × {↓, ↓=} × Param(g), that does not contain both f(i)
↓→ g(j) and

f(i)
↓=→ g(j).

The size-change graph is used to describe the given knowledge about relations

between parameters of caller and called functions. A down-arc f(i)
↓→ g(j) indi-

cates that a value definitely decreases in this call, while a regular arc f(i)
↓=→ g(j)

indicates that a value does not increase. The absence of an arc between a pair of
parameters means that neither of these relations is asserted. For visual clarity,
regular arcs will be drawn in diagrams without the ↓= label.

Henceforth G = {Gc | c ∈ C} denotes a set of size-change graphs associated
with subject program p, one for each of p’s calls. Correctness of the information
expressed by the size-change graphs is captured by the following definition of
safety.

Definition 2.3. Let f’s definition contain call c : g(e1, . . . , en).

1. A labeled arc f(i)
r→ g(j) is called safe for call c if for every state (f,v), if

(f,v)
c→ (g,u), then r = ↓ implies uj < vi; and r = ↓= implies uj ≤ vi.

2. Size-change graph Gc is safe for call c if every arc in Gc is safe for the call.

3. Set G of size-change graphs is a safe description of program p if it contains,
for every call c, a graph Gc safe for that call.

2 The subtraction operator represents “monus” in this paper, since we deal with non-
negative numbers.

4



m

n

�↓
m

n

m

n

�

�↓

m

n

G1, G2 : A → A

G3 : A → A

Fig. 1. Size-change graphs for the Ackermann function

Example. Recall the definition of Ackermann’s function:

A(m,n) = if m=0 then n+1

else if n=0 then A(m-1, 1)

else A(m-1, A(m,n-1))

Number the call sites in the order of their occurrence (from 1 to 3). Then the
diagrams in Fig. 1 show a safe size-change graph set for the program.

2.3 The SCT Criterion

Definition 2.4. Let G be a collection of size-change graphs associated with pro-
gram p. Then:

1. A G-multipath is a finite or infinite sequence M = G1G2 . . . of Gt ∈ G
such that for all t, the target function of Gt is the source function of Gt+1.
It is convenient to identify a multipath with the (finite or infinite) layered
directed graph obtained by identifying the target nodes of Gt with the source
nodes of Gt+1.

2. The source function of M is the source function of G1; if M is finite, its
target function is the target function of the last size-change graph.

3. A thread in M is a (finite or infinite) directed path in M.

4. A thread in M is complete if it starts with a source parameter of G1 and is
as long as M.

5. Thread th is descending if it has at least one arc with ↓. It is infinitely
descending if the set of such arcs it contains is infinite.

6. A multipath M has infinite descent if some thread in M is infinitely de-
scending.

To illustrate the definitions, consider the following program fragment; one
possible corresponding multipath is shown in Fig. 2.

5



G3 : h → gG2 : g → hG1 : f → g

e

d

↓

������

w

v

u

������
e

d

↓
������

c

b

a

�
�
�
���

�
�
�
��� ������

������

Fig. 2. A multipath, with one thread emphasized

f(a,b,c) = g(a+b, c-1)

g(d,e) = ... h(k(e), e, d)...

h(u,v,w) = g(u, w-1)

Definition 2.5. Let G be a collection of size-change graphs. G is SCT (or, sat-
isfies size-change termination) if every infinite G-multipath has infinite descent.

This definition captures the essence of proving termination by impossibility
of infinite descent. A program that has a safe set of size-change graphs that
satisfies the SCT criterion must terminate on every input (for a formal proof see
[2]). For a simple example, consider the Ackermann program; it is easy to see
that any infinite multipath, i.e., an infinite concatenation of size-change graphs
from {G1, G2, G3} (shown in Fig. 1) contains an infinitely descending thread. In
fact, in this simple case we have in-situ descent, where the descending thread is
composed entirely of either arcs m → m or of arcs n → n.

Remark: We adopt the linguistic abuse of relating the size-change termination
property to a program, writing “program p is size-change terminating,” instead
of “p has a safe set of size-change graphs satisfying SCT.”

For practical testing of the SCT property, as well as for some developments
in this paper, it is useful to paraphrase the SCT condition in finitary terms.

Definition 2.6. The composition of two size-change graphs G : f → g and
G′ : g → h is G;G′ : f → h with arc set E defined below. Notation: we write

x
r→ y

r′→ z if x
r→ y and y

r′→ z are respectively arcs of G and G′.

E = {x ↓→ z | ∃y, r . x
↓→ y

r→ z or x
r→ y

↓→ z}⋃ {x ↓=→ z | (∃y . x
↓=→ y

↓=→ z) and

∀y, r, r′ . x r→ y
r′→ z implies r = r′ = ↓=}

Definition 2.7. For a well-formed nonempty call sequence cs = c1 . . . cn, define
the size-change graph for cs, denoted Gcs , as Gc1 ; . . . ;Gcn .

The compositionGcs provides a compressed picture of the multipathM(cs) =
Gc1 . . . Gcn , in the sense that Gcs has an arc x → y if an only if there is a com-
plete thread in M starting with parameter x and ending with y; and the arc will
be labeled with ↓ if and only if the thread is descending.

6



Definition 2.8. Let G be a collection of size-change graphs for the subject pro-
gram. Its closure set is

S = {Gcs | cs is well-formed.}

Note that the set S is finite. In fact, its size is bounded by 3n
2

where n is the
maximal length of a parameter list in the program.

Theorem 2.9 ([2]). Program p is size-change terminating if and only if for all

G ∈ S such that G;G = G, there is in G an arc of the kind x
↓→ x.

The essence of the theorem is that in order for a program not to be size-change
terminating, there must be an infinite multipath without infinite descent. Such
a multipath can be decomposed into an infinite concatenation of segments, that
are all (but possibly the first) represented by the same graph G, and G has no
arc of the above kind.

2.4 Lexicographic Descent

Definition 2.10. Let a program p be given, together with safe size-change graphs.

1. We say that function f has semantic lexicographic descent in parameters
(x1, . . . , xk) if every state-transition sequence from f to itself, f(v) → · · · →
f(u), that can arise in program execution, satisfies v >lo u, where >lo is the
standard lexicographic order on INk.

2. We say that function f has observable lexicographic descent in parameters
(x1, . . . , xk) if every size-change graph G : f → f in the closure set S for the
program satisfies the following condition: there is an i ≤ k such that for all

j ≤ i, G contains an arc xj
rj→ xj, and moreover ri =↓.

3. We say that f has immediate lexicographic descent in parameters (x1, . . . , xk),
if there are no indirect call paths from f to itself; and for each direct call
c : f → f, the size-change graph Gc satisfies the lexicographic descent condi-
tion as above.

4. We say that program p has semantic (resp. observable, immediate) lexico-
graphic descent if every function in p has semantic (resp. observable, ime-
diate) lexicographic descent. A function is called multiply-recursive if it is
computable by a program with immediate lexicographic descent.

As an example, consider the size-change graphs for the Ackermann program
(Fig. 1): this program satisfies immediate lexicographic descent.

Clearly, programs with immediate lexicographic descent form a proper subset
of those with observable one, and those with observable descent form a proper
subset of those with semantic one.

We next show that all three classes of programs yield the same class of
computable functions; thus they all characterize the multiply-recursive functions.

7



Theorem 2.11. Every program with semantic lexicographic descent can be trans-
formed into an equivalent program, with a matching set of size-change graphs,
that has immediate lexicographic descent.

Proof. We first show how to remove mutual recursion from a program, main-
taining its semantic lexicographic descent.

Let f1, . . . , fn be all the functions of the given program. Let the parameters

of fi be x
(i)
1 , . . . , x

(i)
ki
, where we assume that they are organized in the order that

satisfies lexicographic descent. Let bit(i) = 2n−1−2i−1 (a bit map that has only
the ith bit clear). We construct the following function, to simulate all functions
of the given program, using the parameter which as selector.

f(S, x
(1)
1 , x

(1)
2 , . . . , x

(2)
1 , x

(2)
2 , . . . , x

(n)
1 , x

(n)
2 , . . . , which) =

case which of

1 ⇒ smash(f1)
...
n ⇒ smash(fn)

Where smash(fi) is the body of fi with every call fj(e1, . . . , ekj ) replaced with
a call to f, in which:

1. Expressions e1, . . . , ekj are passed for x
(j)
1 , . . . , x

(j)
kj

.

2. The constant j is passed for which.

3. S is replaced with (S ∧ bit(j)). The bitwise and operator ∧, if not present
in the language, should be defined as an auxiliary function (it is primitive
recursive).

4. All other parameters of f (which represent parameters of original functions
other than fj) are passed as received by f.

We also add a new initial function (assume w.l.o.g. that the initial function in
the source program is f1):

finitial (x
(1)
1 , x

(1)
2 , . . . , x

(1)
k1

) =

f(bit(1), x
(1)
1 , x

(1)
2 , . . . , x

(1)
k1

, 0, . . . , 0, 1) .

Explanation: by smashing the program into essentially a single function, all
recursion loops become loops of immediate recursive calls. The value of the
parameter S is always a bit map, where the clear bits identify original functions
that have already been simulated; in other words, values that which has already
taken. The usefulness of this parameter is explained below. Note that in the
general case, that is, when simulating a call that is not the first call to a given
function, the value of S is unchanged.

In fact, when simulating a call to fj (except for the first one), only the pa-

rameters x
(j)
1 , . . . , x

(j)
kj

and which may change. We know fj to have lexicographic

descent (in the unrestricted sense, i.e., over any loop). It follows that the new

8



sequence of values of x
(j)
1 , . . . , x

(j)
kj

is lexicographically less than the previous se-
quence. Since all other parameters retain their values, the parameter list of f
descends lexicographically.

The above argument does not hold with respect to the first call to fj that

is simulated; here the previous values of x
(j)
1 , . . . , x

(j)
kj

are all zero, and the new
values are arbitrary. For this reason we introduced the S parameter. It strictly
decreases whenever an original function is simulated for the first time. Thus, in
such a call, lexicographic descent for f is ensured as well. We conclude that in
the constructed program, f has lexicographic descent in every recursive call.

Next we show that semantic lexicographic descent can be generally turned
into observable one. We assume that mutual recursion has been removed. Let f be
any function of the programwith parameters x1, . . . , xk, ordered for lexicographic
descent. We replace every call f(e1, . . . , ek) in the body of f with the conditional
expression

if e1 < x1 then f(min(e1, x1 − 1), e2, . . . , ek)
else if e2 < x2 then f(e1, min(e2, x2 − 1), . . . , ek)

...
else if ek < xk then f(e1, e2, . . . , min(ek, xk − 1))
else 0

It is easy to see that this change does not affect the semantics of the program:
the expression min(ei, xi−1) will only be used when ei evaluates to less then xi
anyway. However, it is now possible to supply each call with a safe size-change
graph so that observable lexicographic descent holds. 
�

3 Stratifiable Programs

In this section we show that for a particular type of programs, called stratifiable,
size-change termination implies observable lexicographic descent3. Since the no-
tion of semantic lexicographic descent will not be used, we omit the adjective
“observable” in the sequel.

Definition 3.1. Consider a program with its associated size-change graphs. We
call the program stratifiable if the parameters of every function can be assigned
a partial order � so that the existence of a thread leading from f(i) to f(j) (in
any valid multipath) implies f(i) � f(j).

An example of a stratifiable program is the following:

h(m,n) = if m=0 then n

else if n=0 then h(m, n-1)

else h(m-1, m)

3 The term stratifiable is used differently in the context of logic programming. However,
there should be no conflict of denotations in our context.

9



f(x,y) = if ... then f(y, y-1)

else f(y, x-1)

x

y �↓�
�
���

x

y

x

y

	
	
		
�

�
���

↓ x

y

G1 : f → f G2 : f → f

Fig. 3. Example program with size-change graphs.

With the obvious size-change graphs for the two calls. The order of parameters
is m � n; indeed, there is an arc from m to n (in the graph for the second call)
but there is no arc from n to m.

Fig. 3 shows a program with its size-change graphs that are not stratifiable,
since the two parameters depend on each other.

Theorem 3.2. In a stratifiable, size-change terminating program, every func-
tion has lexicographic descent. Moreover the lexicographic ordering of the param-
eters can be effectively (and efficiently) found from the size-change information.

The theorem follows from the following algorithm to find a lexicographic
ordering for a given stratifiable function f.

1. Let Sf be the set of all size change graphs G : f → f in the closure set S for
the given program (see Sec. 2.3). Delete every arc in the graphs of Sf that

is not a self-arc (x
r→ x). These deletions have no effect on the size-change

termination properties, because, due to stratifiability, a thread that visits
f infinitely often can only move a finite number of times between different
parameters of f.

2. Let L = 〈 〉 (the empty list). L will hold the parameters for the lexicographic
ordering.

3. Let x be a parameter not in L such that an arc x
r→ x exists in every graph

of Sf, and at least in one of them r =↓. Append x to L.

4. Delete from Sf all size-change graphs in which x descends. If Sf remains
non-empty, return to Step 3.

Correctness : A parameter x as required in Step 3 must always exist, because of
size-change termination of p; specifically, size-change termination implies that
every composition of graphs from Sf must contain a descending thread. Note
that the parameters already on L will not have self-down-arcs in any of the
graphs remaining in Sf.

It is not hard to verify that L provides a lexicographic ordering for f. 
�

10



4 From SCT to Lexicographic Descent

This section gives an algorithm to transform any size-change terminating pro-
gram into one with lexicographic descent. The construction can be characterized
as instrumentation of the given program by adding extra function names and
parameters, but without affecting its semantics. A simple example of such an
instrumentation is the following. Let p have a function f which calls itself. Re-
place f with two functions fodd and feven that call each other; the functions are
identical to f otherwise. We obtain a semantically equivalent program where the
function name carries some information on the number of recursive calls per-
formed. Similarly, we can add extra parameters to a function to carry around
some information that is not directly used by the program, but may be helpful
in its analysis. The goal of our construction is to obtain a semantically equiv-
alent program together with a set of size-change graphs which show that the
new program is both SCT and stratifiable. Combined with the result of the last
section, this implies lexicographic descent.

4.1 Preliminaries

Throughout this section, p denotes the subject program (given with its size-
change graphs G, and known to satisfy SCT). By S we denote, as previously, the
closure set of G. We construct a new program, p∗.

It will be useful to consider a function as receiving an aggregate of parameters,
which may be of a different shape than the usual linear list. In fact, in p∗, we have
functions whose parameters are arranged in a S-multipath. Such a multipath M
is considered to define the shape of the aggregate; a valued multipath M is
obtained by assigning an integer value to each of the nodes of M. We refer to
M as the underlying multipath of M .

We introduce some notation for operating with (valued) multipaths. Recall
that the expression M : f → g indicates that f is the source function of multi-
path M and g its target function. The target parameters of M, the front layer
of the layered graph, are therefore g’s parameters. Remark that the parameters
of each subject-program function are assumed to be distinct, so the source and
target function are uniquely determined for a multipath.

Say M has n target parameters. The notation:

M

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠

can be used to name the values of M ’s target parameters, or to assign them
values, according to context.

The basic operation on multipaths is concatenation, written as juxtaposition
M1M2. It identifies the target parameters of M1 with the source parameters

11



of M2. To name (or set) the values that these parameters take (in a valued
multipath) we write

M1

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠M2 .

All we said about multipaths applies in particular to a single size-change
graph, which is a multipath of length one, and to a single list of parameters,
which we consider as a zero-length multipath.

Recall the composition operation for size-change graphs, denoted by a semi-
colon (Definition 2.6). Composing all the size-change graphs that form a multi-
path M (or the underlying multipath of a valued multipath M) yields a single
size-change graph which we denote by M (respectively, M).

4.2 Normal Multipaths

The following observation is central to the size-change analysis of the program
we construct.

Observation 4.1. Let A, B, C, D be S-multipaths such that B = C = BC
(hence, if we let G = B, then G satisfies G;G = G). Every pair of nodes in A,
D which are connected by a (descending) thread in multipath ABCD are also
connected by a (descending) thread in multipath ACD.

Informally, folding the multipath by replacing BC by C does not affect con-
nectedness properties for nodes outside the folded part (including nodes on the
folded part’s boundary). Note that, even if we started with a G-multipath, since
C is a size-change graph which does not necessarily appear in G, it is important
that we are working with S-multipaths here.

Definition 4.2. A S-multipath M is foldable if it can be broken into three parts,
M = M0M1M2, such that M1 and M2 are of positive length, and M2 = M1 =
M1M2.
A multipath is normal if it does not have a foldable prefix.

Lemma 4.3. There is a finite bound on the length of a normal multipath.

Proof. Let N be the number of possible size-change graphs over p’s parameters

(N is bounded by 3n
2

, where n is the maximal length of a function’s parameter
list). Associate a multipath M = G1G2 . . . Gt with a complete undirected graph
over {0, 1, . . . , t}, where for all i < j, edge (i, j) is labeled (“colored”) with
the size-change graph Gi+1; · · · ;Gj . By Ramsey’s theorem [6, p. 23], there is a
number N ′ such that if t ≥ N ′, there is a monochromatic triangle in the graph.
Such a triangle {i, j, k}, with i < j < k, implies that Mk = G1G2 . . . Gk is
foldable. 
�

12



4.3 Constructing p∗

We now show the construction of p∗ All functions in the program p∗ will be called
F(M), with the underlying multipath of M identifing the function referenced.
We write F(M : M) to name the underlying multipath explicitly.

We define F(M : M) for every normal S-multipath M whose source is p’s
initial function finitial . The initial function of p∗ is associated with the zero-
length multipath that represents finitial ’s parameter list. For each M : finitial →
f, the body of F(M : M) is the body of f. Occurrences of f’s parameters in the
body are replaced with the corresponding target parameters of M . Function
calls in the body are modified as we next describe. We also describe size-change
graphs for the calls.

Consider a call c : f → g with size-change graph G. We distinguish two cases.

Case 1: MG is a normal multipath. In this case the call g(e1, . . . , en) becomes

F(MG

⎛
⎜⎝

e1
...
en

⎞
⎟⎠) .

The associated size-change graph contains a regular arc from each node of M
(on the source side) to its counterpart on the target side (in the prefix M of
MG). This size-change graph is correct because the data in the connected nodes
are identical.

Case 2: MG is not normal, so it must be foldable. Let MG = ABC where
B = C = BC, B and C of positive length. Let H = B; note that H must have
identical sets of source and target parameters, call them x1, . . . , xn. Assume that

MG = A

⎛
⎜⎝

x1

...
xn

⎞
⎟⎠B

⎛
⎜⎝

y1
...
yn

⎞
⎟⎠C ,

then the call g(e1, . . . , en) becomes

F(A

⎛
⎜⎝

v1
...
vn

⎞
⎟⎠H

⎛
⎜⎝

e1
...
en

⎞
⎟⎠)

where

vi =

{
yi if xi

↓→ xi ∈ H

xi if xi
↓→ xi /∈ H .

The size-change graph for this call contains an arc from every node in A (on
the source side) to its counterpart on the target side. For a parameter xi in the
front layer of A, the arc that connects the source node xi to the corresponding

13



Fig. 4. An illustration of a multipath in p∗. The second call is a folding call. See also
Appendix A for a concrete example.

target node is a down-arc in case that vi = yi (note that the choice of vi is
static). All other arcs are regular.

A call that follows Case 2 is called a folding call. The length of multipath A
is the folding depth of this call.

The correctness of the size-change graphs comes from the next lemmas.

Lemma 4.4. In a function call F (M : M) executed by p∗, the data in M satisfy
the relations implied by the arcs of M.

Proof. We show that this property is preserved throughout the execution (it is
trivial in the beginning). In a non-folding call, F (MG) it holds for the arcs in M
by IH (induction hypothesis) and for the arcs of G by assumption (that G is safe
for p). In a folding call, F (AH), again within A it holds by IH except where we
replaced a value xi with yi, i.e., set vi = yi. But in this case we know by IH that
xi > yi. It follows that any relation of the form z > xi or z ≥ xi is satisfied after
the replacement. It remains to consider the arcs of H . Now the case vi = yi is the

one which is obvious, and we consider the case vi = xi and an arc xi
↓=→ xj ∈ H

(resp. xi
↓→ xj ∈ H). We have to show that the corresponding relation holds

between xi and ej , the value of expression ej . Indeed, since H = BC includes
this arc, there is a thread (resp. descending thread) in BC from xi on the left
to xj on the right, which by IH (plus safety of G) implies that xi ≥ ej (resp. >).

Lemma 4.5. The size-change graphs given with p∗ are safe.

Proof. All the arcs in these size-change graphs represent values which are copied,
and are clearly safe, with the exception of the case vi = yi in a folding call. In

14



this case, we include a down-arc, which means that xi > yi. This is true because

xi
↓→ xj ∈ H = B plus the previous lemma.

We also need the following observation, whose verification is left to the reader:

Observation 4.6. The multipath produced by a folding call, namely AH , is
normal (in other words, there is no need for repeated folding).

We now arrive at the main statement.

Lemma 4.7. Program p∗ is size-change terminating.

Proof. Consider any infinite multipath M∗ of p∗ (note that such a multipath is
a layered graph whose layers are finite S-multipaths, connected by size-change
arcs for p∗. See Fig. 4).

Because the number of normal S-multipaths is finite, there must be infinitely
many folding calls along M∗. Let dj be the depth of the jth folding call, let
d = lim infj→∞ dj , and consider the suffix of M∗ from the first folding at depth
d after which there is no folding at a smaller depth. It suffices to show that this
multipath has infinite descent.

Let A be the prefix of length d of the S-multipath that starts M∗. Note
that A appears unmodified throughout M∗. Each of its n target parameters
xi carries an in-situ thread throughout M∗. The arc of this thread is a down-

arc whenever the condition xi
↓→ xi ∈ H is satisfied, where H is the size-change

graph representing the folded multipath segment. Now, H is an idempotent size-
change graph in the closure set for p and according to Theorem 2.9 there must

be some i such that xi
↓→ xi ∈ H . Hence in each call, one of the n in-situ arcs

has a down-arrow. This clearly means that at least one of the infinite threads is
descending. 
�

4.4 Conclusion

From a given size-change terminating program p we obtained a program p∗

that is size-change terminating and, quite obviously, stratifiable. Therefore, by
Theorem 3.2, we obtain

Theorem 4.8. Every size-change terminating program can be effectively trans-
formed into an equivalent program that has lexicographic descent.

Corollary 4.9. Assume that function f : IN → IN is computed by a size-change
terminating program that uses only primitive recursive operators. Then f is
multiply-recursive.

Suppose we limit the class of multiply-recursive function definitions by disal-
lowing nested recursive calls. This rules out, for instance, the definition of Ack-
ermann’s function in Section 1. Péter [3] shows that the functions that can be
defined this way are the primitive recursive functions. Since the transformation
of p to p∗ never introduces nested calls, we also have

15



Corollary 4.10. Assume that function f : IN → IN is computed by a size-
change terminating program that uses only primitive recursive operators, and
has no nested recursion. Then f is primitive recursive.

A comment on complexity. Our construction to transform a size-change termi-
nating program into one with lexicographic descent has super-exponential com-
plexity. Is this necessary? It is not hard to verify that the construction is in fact a
reduction from the set of size-change terminating program descriptions to the set
of such program descriptions that are also stratifiable. We know that the former
set is PSPACE-complete [2], while the latter belongs to PTIME [1]. Hence, it is
unlikely that a construction of this kind can be done in sub-exponential time.

References

[1] Amir M. Ben-Amram. SCT-1-1 ∈ PTIME (plus some other cases). unpublished
note, Copenhagen, 2001.

[2] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle
for program termination. In Proceedings of the Twenty-Eigth ACM Symposium on
Principles of Programming Languages, January 2001, pages 81–92. ACM press,
2001.

[3] R. Péter. Recursive Functions. Academic Press, 1967.
[4] N. Lindenstrauss, N. and Y. Sagiv. Automatic termination analysis of Prolog

programs. In Proceedings of the Fourteenth International Conference on Logic
Programming, L. Naish, Ed, pages 64—77. MIT Press, Leuven, Belgium, 1977. See
also: http://www.cs.huji.ac.il/∼naomil/.

[5] Y. Sagiv. A termination test for logic programs. In Logic Programming, Proceedings
of the 1991 International Symposium, San Diego, California, USA, Oct 28–Nov 1,
1991, V. Saraswat and K. Ueda, Eds. MIT Press, 518–532.

[6] J. H. van Lint and R. M. Wilson. A Course in Combinatorics, page 23. Cambridge
University Press, 1992.

16



A An Example

Following is a simple but complete example for the construction of Section 4.
We consider a program having the following (labeled) calls:

f(m,n) = . . . 1 : f(m− 1, x) . . . 2 : f(m− y, n− 1)

The values of x and y are unspecified, and the subtraction operation is in
natural numbers so that 0 ≤ m− y ≤ m. The obvious size-change graphs are:

G1 =

[
m

↓−→ m
n n

]
, G2 =

[
m −→ m

n
↓−→ n

]
.

The program actually has lexicographic descent, but for the sake of the ex-
ample we’ll nevertheless apply the general construction. We start by listing all
non-empty, normal multipaths. You may want to verify that if adding another
call to one of these multipaths takes you out of this set, then it has created a
foldable suffix — a suffix BC where B = C = BC.

M(1) = G1 =

[
m

↓−→ m
n n

]

M(2) = G2 =

[
m −→ m

n
↓−→ n

]

M(12) =

[
m

↓−→ m −→ m

n n
↓−→ n

]

M(21) =

[
m −→ m

↓−→ m

n
↓−→ n n

]

M(212) =

[
m −→ m

↓−→ m −→ m

n
↓−→ n n

↓−→ n

]

Next we list the function headings and calls in the transformed program.
Every function will be written with a list of parameters of type “natural number”
(not an aggregate parameter), but the list will be given in a matrix form that
shows the correspondence with the nodes of the appropriate multipath.

17



finitial

(
m1

n1

)
= . . . 1 : fM(1)

(
m1 m1 − 1
n1 x

)
. . .

. . . 2 : fM(2)

(
m1 m1 − y
n1 n1 − 1

)

fM(1)

(
m2 m2

n1 n2

)
= . . . 1 : fM(1)

(
m1 m2 − 1
n1 x

)
. . .

. . . 2 : fM(12)

(
m1 m2 m2 − y
n1 n2 n2 − 1

)

fM(2)

(
m1 m2

n1 n2

)
= . . . 1 : fM(21)

(
m1 m2 m2 − 1
n1 n2 x

)
. . .

. . . 2 : fM(2)

(
m1 m2 − y
n2 n2 − 1

)

fM(12)

(
m1 m2 m3

n1 n2 n3

)
= . . . 1 : fM(1)

(
m3 m3 − 1
n1 x

)
. . .

. . . 2 : fM(12)

(
m1 m2 m3 − y
n1 n3 n3 − 1

)

fM(21)

(
m1 m2 m3

n1 n2 n3

)
= . . . 1 : fM(21)

(
m1 m3 m3 − 1
n1 n2 x

)
. . .

. . . 2 : fM(212)

(
m1 m2 m3 m3 − y
n1 n2 n3 n3 − 1

)

fM(212)

(
m1 m2 m3 m4

n1 n2 n3 n4

)
= . . . 1 : fM(21)

(
m1 m4 m4 − 1
n1 n2 x

)
. . .

. . . 2 : fM(212)

(
m1 m2 m3 m4 − y
n1 n2 n4 n4 − 1

)

Next we show size-change graphs for two of the transformed program’s func-
tions, that is, for four calls, two of which are folding calls. Note that the size-
change graphs differ from the dataflow graphs for the calls, that they are obvi-
ously stratified, and that a down-arc appears in each of the folding calls (you
can also verify that the down-arc is safe by looking at the piece of the multipath
that has been folded away).

fM(2) → fM(21) fM(2) → fM(2) fM(21) → fM(21) fM(21) → fM(212)

m1 −→ m1

n1 −→ n1

m2 −→ m2

n2 −→ n2

m3

n3

m1 −→ m1

n1
↓−→ n1

m2 m2

n2 n2

m1 −→ m1

n1 −→ n1

m2
↓−→ m2

n2 −→ n2

m3 m3

n3 n3

m1 −→ m1

n1 −→ n1

m2 −→ m2

n2 −→ n2

m3 −→ m3

n3 −→ n3

m4

n4

18


