
A Complexity Tradeoff in Ranking-Function

Termination Proofs

Amir M. Ben-Amram∗

April 25, 2008

Abstract

To prove that a program terminates, we can employ a ranking func-
tion argument, where program states are ranked so that every transi-
tion decreases the rank. Alternatively, we can use a set of ranking func-
tions with the property that every cycle in the program’s flow-chart can
be ranked with one of the functions. This “local” approach has gained
interest recently on the grounds that local ranking functions would be
simpler and easier to find. The current study is aimed at better un-
derstanding the tradeoffs involved, in a precise quantitative sense. We
concentrate on a convenient setting, Size-Change Termination frame-
work (SCT). In SCT, programs are replaced by an abstraction whose
termination is decidable. Moreover, sufficient classes of ranking func-
tions (both global and local) are known. Our results show a tradeoff:
either exponentially many local functions of certain simple forms, or
an exponentially complex global function may be required for proving
termination.

1 Introduction (informal)

The oldest trick in the book of termination proofs for programs (e.g., [19])
is the ranking function proof. In this method, we find a function ρ that
maps program states into a well-founded ordered set, such that ρ(s) > ρ(s′)
whenever s′ is a state reachable from state s.

Let us call such a ranking function global. Recently, there has been grow-
ing interest in the use of local ranking functions: briefly, instead of a single

∗Email: amirben@mta.ac.il Mailing address: School of Computer Science, Tel-Aviv
Academic College, 4 Antokolski Str., 64044 Tel-Aviv, Israel. Phone: +972− 3− 5211852
Fax:+972− 3− 5211871

1

ranking function we have a finite set of functions, such that every possible
cycle—a closed path in the control flow graph—decreases at least one of
them (others may even increase). This idea has already been described and
justified more than once, in different contexts [7, 16]. Codish, Lagoon and
Stuckey [4] write:

The main advantage in applying local ranking functions is that
they take a simpler form than corresponding global ranking func-
tions and are easy to find automatically.

The “simpler form” that a local ranking function takes turns out to be, in the
case of [4], a linear combination of program variables. This is perhaps not
so surprising as linear ranking functions for proving termination of loops
are quite ubiquitous. The termination checker described in [6] maintains
a set of such functions and iterates a procedure that extends it. Briefly,
the procedure checks whether all cycles are covered by the current set of
functions; otherwise, a cycle is found whose termination is unproven and a
new ranking function is constructed for it.

The quotation from [4] above suggests a tradeoff: complexity of the global
ranking function1 versus the quantity of simple, local ranking functions. The
purpose of this work is to investigate this tradeoff, with the goal of better
understanding the design space of termination analyses.

The approach taken here to is to conduct a case study in a very simple
setting. The setting is a type of abstract programs called single-function,
strict SCT instances (1SSCT) with the natural numbers N as data. The SCT
abstraction was defined in [12] and proved useful for termination analysis in
many contexts ([13, 5, 7, 9, 10, 18, 1] and others)2. A particular impetus for
this research was the recent discovery by Lee [11] of a way to express SCT
termination proofs in the form of a global ranking function argument; before
this work, only a connection to the local approach was known, elaborated
by Codish, Lagoon and Stuckey [4]. Together these two works suggest SCT
programs as a case for investigating the local-vs-global tradeoff.

In the following section, precise definitions are given to make this article
rigorous and self-contained.

Section 3 investigates linear ranking functions. It is shown that within
our case study framework general linear combinations are not more powerful

1not computational complexity, but the complexity of expressing the function, and
perhaps that of verifying it

2The Logic Programming termination analyses cited here predate the introduction of
SCT by Lee et al. However the “monotonicity constraints” they used are very much alike
the SCT abstraction. [4] examines the subtle difference.

2

than simple sums of variables (combinations with 0/1 coefficients); and that
instances that require an exponential number of linear ranking functions
exist.

Section 4 investigates alternative ranking functions: minimum and max-
imum of a subset of the variables. This is motivated by the observation that
both types of functions also provide completeness for 1SSCT programs and,
in fact, beat the linear ones on the examples discussed in Section 3.

Finally, Section 5 turns to global ranking functions and discusses the
conjecture that such functions for 1SSCT programs may need to be expo-
nentially complex.

2 Introduction (formal)

This section gives the definitions necessary for the rest of the paper. For a
fuller exposition and examples please refer to [12] and other publications on
SCT.

2.1 SCT instances and their transition systems

The SCT abstraction of a program is a transition system with states of the
form (f, ~v), where f represents a program point (e.g., a basic-block label in
an imperative program, or a function name in a functional program) and
~v represents the program’s store or environment. The notations we use for
SCT evolved from the use of a functional language (though this is not an
essential choice!) and hence some of the terminology.

Definition 2.1. A control flow graph is a directed multigraph (Fun,Calls).
The nodes are referred to as function names and include an initial node
f0. The arcs are known as calls. Every function f ∈ Fun has an arity
arity(f) ≥ 0, defining the number of its parameters. The latter may be
denoted by x1, . . . , xarity(f).

Definition 2.2. Let f, g ∈ Fun. A size-change graph from f to g, written
G : f → g, is a bipartite graph with source nodes x1, . . . , xarity(f), target
nodes x′1, . . . , . . . , x

′
arity(g) and arcs labeled with either ↓ or ↓=.

An arc with a ↓ label is called strict. Note that it is common to mark
target parameter names with primes (x′1). For notational convenience, we
may also apply the prime to a set of parameters: {x1, x4}′ is {x′1, x′4}.

3

Definition 2.3. Let CFG = (Fun,Calls) be a control-flow graph. An SCT
instance G over CFG is a set of size-change graphs Gc, where c ranges over
Calls, and Gc has source and target functions as specified by c.

Observe that the CFG is implicitly specified by G.
We treat G as specifying an infinite-state transition system, intended as a

conservative abstraction of the subject program (thus, the transitions should
be a superset of the transitions possible in actual program computations).

Definition 2.4. A state is a pair (f, ~v), where f ∈ Fun and ~v ∈ Narity(f).
The set of all states is S t.

A state transition is a pair (s, s′) of states. For a size-change graph
G : f → g associated with call c and states s = (f, ~v), s′ = (g, ~u), we write
G |= s 7→ s′ if for every arc xi

r→ x′j in G, uj ≤ vi, where if r = ↓ then
uj < vi.

The transition system associated with G, TG, has state space S t and
transitions

{(s, s′) | G |= s 7→ s′ for some Gc ∈ G}.

2.2 Termination and the SCT condition

Definition 2.5. Let G be an SCT instance. A run of TG is a (finite or
infinite) sequence of states s0, s1, s2 . . . such that for all i, there is some
Gci ∈ G such that Gci |= si 7→ si+1.

Definition 2.6. Transition system TG is terminating if it has no infinite
run beginning at f0.

The point of SCT is to determine if TG is terminating by analyzing G.

Definition 2.7. Let G be an SCT instance.

1. A G-multipath is a (finite or infinite) sequence M = G1G2 . . . with
Gi ∈ G, such that for all i, the target function of Gi is the source
function of Gi+1. It is convenient to identify a multipath with the
(finite or infinite) layered directed graph obtained by identifying the
target nodes of Gi with the source nodes of Gi+1.

2. A thread in M is a (finite or infinite) directed path in M (when viewed
as a single graph). A thread is complete if it spans the length of M .

3. A thread is descending if it has at least one arc with ↓. It is infinitely
descending if the set of such arcs it contains is infinite.

4

•
•
•

�
��3

�
��3
-

-

◦
◦
◦

;

◦
◦
◦

�
��3

�
��3
-

Q
QQs

�
�
�

=

•
•
•

�
��3

�
��3
--

�
�
�

Figure 1: Size-change graph composition. Heavy arcs are strict.

Definition 2.8. An SCT instance G is a positive instance (or, G satisfies
SCT) if every infinite G-multipath, beginning at f0, contains an infinitely-
descending thread. A single size-change graph G is said to satisfy SCT if
G = {G} does.

THEOREM 2.9 (SCT main theorem). TG is terminating if and only if
G satisfies SCT.

The “if” part of this theorem (soundness of the SCT criterion) is proven
in [12]. For the “only if” direction (completeness) see [11].

2.3 The Composition-Closure Algorithm

An important property of SCT is that it can be decided by testing every
graph in a finite set—the composition closure of G. This decision proce-
dure stems from [17] and we freely mix Sagiv’s definitions with newer SCT
terminology following [12].

Definition 2.10. The composition of two size-change graphs G : f → g
and G′ : g → h is G;G′ : f → h with arc set E defined as follows. For a
pair of parameters x, y, if multipath GG′ has a descending thread from x to

y, then E contains an arc x
↓→ y. Otherwise, if GG′ has any thread from x

to y, E contains x
↓=→ y. Otherwise, there is no arc from x to y.

Composition has the following easy-to-prove property:

LEMMA 2.11. Let c, c′ be two calls such that the target of c is the source of
c′. Let Gc, Gc′ be corresponding size-change graphs. For any states s, s′, s′′

such that Gc |= s 7→ s′ and Gc′ |= s′ 7→ s′′ we have Gc;Gc′ |= s 7→ s′′.

Composition is illustrated by the diagrams in Figure 1.
We denote the composition closure of G by G+.

5

x

y

z

�
�

��3

�
�

��3Q
Q

QQs

-

x′

y′

z′
I

	

I

Figure 2: The circular variant of a size-change graph.

Definition 2.12. For a size-change graph G, the circular variant G′ of G
is a directed graph obtained by adding, for every parameter xi, a backward
arc x′i → xi (Figure 2).

THEOREM 2.13 (after [17]). G satisfies SCT if and only if for every
G ∈ G+, there is a directed cycle in G′ that includes a strict arc.

The closure G+ can be computed in finite time by a trite procedure.
Testing each graph for the property indicated in the theorem is straight-
forward. It follows that SCT is decidable. This is not a contradiction to its
soundness and completeness, since the transition systems described by SCT
instances are of a special type and do not represent all programs.

2.4 Ranking functions for SCT programs

Definition 2.14. Let P (s, s′) be any predicate defined over pairs of states.
For a size-change graph G ∈ G we write G |= P (s, s′) if

(G |= s 7→ s′) ⇒ P (s, s′).

Definition 2.15. Given a size-change graph G, a (local) ranking function
for G is a function ρ : S t → W , where W is a well-ordered set, such that
G |= ρ(s) > ρ(s′). Given an SCT instance G, a global ranking function for
G is a function ρ that satisfies G |= ρ(s) > ρ(s′) for every G ∈ G.

In this paper, the codomain of all global ranking functions will be N
(with the standard order).

6

Clearly, if a global ranking function exists, then TG terminates; it is also
possible to prove termination using a finite number of local ranking functions
(see [16]). It can easily be seen that it suffices to look for local ranking
functions for that are “loops,” i.e., transition sequences that begin and end
at the same program point (function name). Thus the local approach is to
look for a finite set of ranking functions that covers all the loops.

3 Linear Ranking functions for SCT instances

As already mentioned, a central claim of [4] is the sufficiency of linear ranking
functions of a simple form for all SCT instances. Here is a precise statement.

THEOREM 3.1 (Codish-Lagoon-Stuckey). Let G be a positive SCT
instance with a single function and parameters x1, . . . , xn, and let G ∈ G+.
Then there is a ranking function for G of the form ρ(x1, . . . , xn) =

∑
aixi

with all coefficients ai ∈ {0, 1}.

The theorem implies a certain completeness result for termination check-
ers based on linear ranking functions (such as [6]). I.e., this strategy is
sufficient for handling all SCT programs. It also shows that at most 2n

different ranking functions may ever be needed to handle a single-function
SCT program.

Though this theorem is from [4], let us give a proof, as it clarifies the
connection between size-change graphs and linear combinations.

Proof of Theorem 3.1. Let G ∈ G+. We assume that there is a directed
cycle in G′, including a strict arc. Now, if there is any cycle, there is a
simple one, so we can concentrate on simple cycles. Such a cycle has the
form:

xi0 → x′i1 → xi1 → x′i2 → · · · → x′ik → xi0 ,

where ik = i0 but i1, . . . , ik are all different. Let S = {xi1 , . . . , xik}. Thus
S′ = {x′i1 , . . . , x

′
ik
}. The cycle consists of a perfect matching in G between

S and S′, augmented with backward arcs (consider Figure 2: the cycle is
x→ y′ → y→ x′ → x. The matching is {x→ y′, y→ x′}).

It clearly follows that for all j, G |= xij ≥ x′ij+1
(where ik+1 means i0)

and since at least one of the forward arcs is strict, for some j we have
G |= xij > x′ij+1

. Hence, G |=
∑

j xij >
∑

j x′ij .

A set S for which there exists a perfect matching to S′ will be said to
be matched in G.

7

We next show that, in some sense, the above is the only way in which a
size-change graph can imply a linear ranking function. However one has to
take into account that a sum of ranking functions is also a ranking function.

Definition 3.2. Let G : f→ f be a size-change graph that satisfies SCT. A
function ρ(x1, . . . , xn) =

∑
aixi, with ai ∈ N is simple if ρ =

∑
i∈S xi where

S is matched in G.

Definition 3.3. Let G : f→ f be a size-change graph. A function ρ(s) is a
quasi-ranking function for G if G |= ρ(s) ≥ ρ(s′).

LEMMA 3.4. Let G : f → f be a size-change graph that satisfies SCT.
Assume that the function ρ(x1, . . . , xn) =

∑
aixi, with ai ∈ N, is a ranking

function for G; i.e., G |= ρ(x1, . . . , xn) > ρ(x′1, . . . , x
′
n). Then ρ is the

sum of one or more simple quasi-ranking functions, at least one of which is
ranking.

Proof. Consider the digraph G′ = (V,E) with V = X ∪ X ′, where X =
{x1, . . . , xn}.

Let us consider this graph as a flow network [15] with unlimited capacities
on all arcs in E (but zero capacity elsewhere). We will show that it is possible
to assign a flow value (or “weight”) wij ≥ 0 (always zero if (xi, x

′
j) /∈ E),

obtaining a valid circulation (i.e., flow is conserved at every node), such that

∀i :
n∑

j=1

wij =
n∑

j=1

wji = ai. (1)

That is, the aggregate flow out of node xi, as well as into x′i, is ai.
To achieve a valid circulation, the flow on a backward arc x′i → xi must

clearly be ai. It rests to assign flows to the forward arcs. To this end,
represent each size-change arc xi → x′j as the linear constraint:

xi − x′j ≥ bij

where bij is 1 if the arc is strict and 0 otherwise. We get a system of linear
constraints in 2n variables, one for each arc. To simplify notations we may
add trivial rows (0 ≥ 0) for pairs (i, j) where there are no arcs, as to have
exactly n2 constraints. If we further add the constraint:

−
n∑

i=1

aixi +
n∑

j=1

ajx
′
j ≥ 0 (2)

8

we obtain a system of the form Ax ≥ b, with x = (x1, . . . , xn, x′1, . . . , x
′
n),

b containing 1 for the rows that represent strict arcs, while A contains a
+1 and a −1 in each row that represents an arc, and the coefficients of (2)
in the last row. Here is an example of such a system (with n = 2), just to
illustrate its form:

1 0 −1 0
1 0 0 −1
0 1 −1 0
0 0 0 0
−a1 −a2 a1 a2

 · x ≥

0
1
1
0
0

The system is feasible if and only if ρ is not a ranking function (constraint
(2) indicates that ρ does not decrease, while the other constraints ensure a
valid transition). Since we assumed that it is, the system must be infeasible,
and by Farkas’ lemma there is a vector of n2 + 1 weights ~w ≥ 0, such that

AT ~w = 0 and bT ~w > 0.

The weight of the last row cannot be zero (for without it, the system is
clearly feasible) and by normalizing it to 1 we obtain weights that satisfy
(1).

It is also important to note that at least one strict arc must have a
nonzero weight. The weights are rational, but not necessarily integral.

Next, we show that it is possible to round the weights to integers while
preserving (1). First, we introduce capacities for this flow network. The
capacities are the current flows, rounded up to integers. Let D be a common
denominator for the weights. If they are not all integral, apply the following
procedure:

1. Are the weights of strict arcs integral?

(a) If they are, let e be a (non-strict) arc such that the difference
dwee − we is smallest among the nonzero differences.

(b) Otherwise choose e in the same fashion among strict arcs.

2. Note that e has a nonzero residual capacity. Suppose that e is u → v;
there must be an arc leaving v with a non-integral residual capacity.
Continue in this way until a cycle consisting of arcs with non-integral
residual capacities is obtained. Now, it is clearly possible to increase
the flow on this cycle by 1/D.

9

Repeating the procedure sufficiently many times we can get an integral
flow which preserves (1) as well as the property that at least one strict arc
has nonzero flow.

A procedure similar to the above can be used to decompose the flow into
a set of simple cycles of flow 1. These cycles give rise to simple quasi-ranking
functions. For those that contain a strict arc, the functions are ranking.

COROLLARY 3.5. Whenever a linear ranking function exists for a size-
change graph, there is a simple one.

We can now move to our goal, a lower bound on the number of rank-
ing functions that may be necessary in a termination proof, if we restrict
ourselves to assigning a linear ranking function to each control-flow cycle.

The following lower bounds are given by explicit construction of SCT
instances. It turns out that they can be obtained by instances of a restricted
form; this only strengthens the lower-bound result. The restrictions are two:
the control-flow graph shrinks to a single node; and all size-change arcs are
strict. Though this may not be obvious, the latter restriction is the more
significant; single-node flow-graphs encompass most of the complexity of the
SCT problem.

Definition 3.6. A 1SSCT instance is an SCT instance where there is a
single function name, f (which is also the initial function), and all size-
change arcs are strict. The name 1SSCT also stands for the set of positive
1SSCT instances.

Next, we formulate and prove a lower bound.

Definition 3.7. A set R is a sufficient set of ranking functions for SCT
instance G if for every G ∈ G+ there is ρ ∈ R that is a local ranking function
for G.

THEOREM 3.8. There is a 1SSCT instance G with n parameters and n+1
size-change graphs such that any sufficient set of linear ranking functions for
G contains at least 2n − 1 functions.

Note that the lower bound is tight since 2n − 1 is the number of (non-
constant) functions of the form of a simple ranking function. Thus, the
instance claimed in the theorem requires the use of all possible simple rank-
ing functions!

The theorem is proved by presenting the construction of G and proving
a property that implies the result.

10

Figure 3: Construction 3.1, with n = 5.

Notation. In the constructions, it is convenient to refer to parameters by
their indices, e.g., 1 instead of x1, where context permits. In particular, arcs
will be written as 1 → 2 instead of x1 → x2. Moreover the indices are not
necessarily 1 through n, but chosen for convenience of the construction.

Construction 3.1: 1SSCT instance G.

In this construction we index the parameters by the elements of the cyclic
group Zn. For k = 0, . . . , n− 1 let

Gk = {i → i | i 6= k} ∪ {k − 1 → k}
and let

Gn = {i → i + 1 | 0 ≤ i < n},
where expressions i + 1, k − 1 are taken modulo n.

Set G = {G0, . . . , Gn−1, Gn}.

LEMMA 3.9. For every nonempty set S = {s1, . . . , st} ⊆ Zn there is a
graph GS ∈ G+ that has S and only S as a matched set.

Proof. Assume, for simplicity, that 0 ∈ S (there is no loss of generality,
since S is nonempty and since the indices can be cyclically permuted for
convenience). Let i1 < i2 · · · < is be the elements of Zn \ S in increasing
order. Define

GS = Gi1 ; · · · ;Gis ;Gn

Consider the multipath MS = Gi1 · · ·Gis (an empty multipath if S = Zn).
The reader may verify that for every 1 ≤ j ≤ s, there is no complete thread

11

Figure 4: The multipath MS ;Gn for n = 5 and S = {0, 2, 4}.

in MS beginning at ij . Thus, GS has no arc from ij , which shows that if T
is a matched set for GS , then T ⊆ S. Next, for an arbitrary s ∈ S, it is not
hard to see that GS has just a single arc from s into S, namely s → succ(s)′

where succ(s) is the first element of S after s (in cyclic order of Zn). It
follows that T must be equal to S. Figure 4 gives an example.

Proof of Theorem 3.8. G above satisfies SCT; this is easy to verify. By the
last lemma, for each of the 2n − 1 different nonempty subsets S of the
parameters, there is a size-change graph GS ∈ G+ that has S and only S as
a matched set; therefore (by Lemma 3.4), GS has only

∑
xi∈S xi (up to a

constant factor) as a linear ranking function. The conclusion follows.

Remark: It is easy to see (and important for the next section) that
another example of the same complexity is Gt, the transposition of G (i.e.,
exchange the source and target sides of all graphs).

4 Max and Min as ranking functions

The example in the above proof is revealing in that, as the alert reader
may have discovered, there is actually a simple ranking function that fits
all graphs in G+, namely: max(x0, . . . , xn−1). Similarly, for Gt we can use
min(x0, . . . , xn−1).

Conclusion: Even if the restriction to linear ranking functions is suffi-
cient to handle a program, it may well be rewarding (in efficiency) to extend

12

the ranking function component of a termination analyzer to allow functions
like min and max.

In fact, each of these types of ranking function suffices on its own for
handling all strict SCT instances—just repeat the proof of Theorem 3.1.
Thus, our complexity question applies to such functions as well: how many
max (or min) ranking functions may be necessary, in the worst case, for
handling a strict SCT instance? We next answer this question.

LEMMA 4.1. Let G : f → f be a size-change graph that satisfies SCT.
Assume that the function ρ(x1, . . . , xn) = maxxi∈S xi is a ranking function
for G. Then S is self-surjective in G, i.e., ∀y ∈ S.∃x ∈ S.(x → y) ∈ G.

Proof. Assume the contrary. Thus, there is y ∈ S such that no x ∈ S has
arc x → y in G. It follows that in a state transition modeled by G it is
possible to assign to y a value not bounded by any of the values previously
in S, so that maxS rises.

A similar result holds for set minima:

LEMMA 4.2. Let G : f → f be a size-change graph that satisfies SCT.
Assume that the function ρ(x1, . . . , xn) = minxi∈S xi is a ranking function
for G. Then S is thread-preserving in G, i.e., ∀x ∈ S.∃y ∈ S.(x → y) ∈ G.

We now move to a lower bound.

THEOREM 4.3. There is a 1SSCT instance G with n parameters and n+1
size-change graphs such that any sufficient set of max ranking functions for
G contains at least 2n − 1 functions. A similar result holds for min.

Proof. The example for max is exactly Gt with G as in Section 3. For every
graph GS described there, S is the one and only self-surjective nonempty
set. For min, the example is naturally G itself. For every graph GS , S is
the one and only thread-preserving nonempty set.

It is natural to ask what happens if we allow all three types—sums, max-
ima and minima of sets of parameters—to be mixed in a single termination
proof (different functions for different loops). The next construction proves
that an exponential lower bound still holds.

Construction 4.1: 1SSCT instance H.

For any set of parameters P let IP be the size-change graph consisting of
arcs x → x for all x ∈ P . For notational simplicity, In means IP with
P = Zn.

13

Let GA, GB be size-change graphs over parameter sets A and B, respec-
tively. We define GA⊗GB to be a graph over parameter set A×B that has
arc: (i, j) → (i′, j′) whenever (i → i′) ∈ GA and (j → j′) ∈ GB.

For sets of graphs GA and GB, we define

GA ⊗ GB = {G⊗ IB | G ∈ GA} ∪ {IA ⊗G | G ∈ GB}.

For sets C ⊆ A × B, let π1C (respectively π2C) denote the first (second)
projection of C.

Let H = G ⊗ Gt, where G is given by Construction 3.1. Note that the
parameter names in this instance are the elements of P = Zn × Zn.

LEMMA 4.4. For every pair of nonempty sets S, T ⊆ Zn there is a graph
HST ∈ H+ such that:
(i) if A ⊆ P is nonempty and thread-preserving in HST then π1A = S.
(ii) if B ⊆ P is nonempty and self-surjective in HST then π2B = T .

Proof. Assume w.l.o.g. that 0 ∈ S, T ; let i1 < i2 · · · < is be the elements of
Zn \ S, and define

HS = (Gi1 ⊗ In); · · · ; (Gis ⊗ In); (Gn ⊗ In).

Observe that HS = GS ⊗ In with GS as in Lemma 3.9. In a similar way we
obtain HT = In ⊗Gt

T . We let HST = HS ;HT .
Suppose that A 6= ∅ is a thread preserver in HST . Let (i, j) ∈ A. Then

there is an arc (i, j) → (i′, j′) in HST with (i′, j′) ∈ A. If there is an arc
of HT into (i′, j′), it has the form (i′, j′′) → (i′, j′) for some j′′ (determined
by GT). It follows that HS must have an arc (i, j) → (i′, j′′), which by the
construction of HS entails (i → i′) ∈ GS . Also, i′ ∈ π1A; we conclude that
π1A is thread preserving in GS , and this implies π1A = S, concluding the
proof of (i). Claim (ii) is clearly symmetric.

THEOREM 4.5. There is a 1SSCT instance H with n2 parameters and
2n + 2 size-change graphs such that any sufficient set of ranking functions
for H, where each function is either linear, or is a maximum or minimum
over a set of parameters, contains at least 2n − 1 functions.

Proof. Consider the (2n − 1)2 pairs of nonempty sets (S, T) and the graphs
HST provided by the above lemma. Every function of the type min(i,j)∈A x(i,j)

can rank at most 2n − 1 such size-change graphs, namely those where
S = π1A. Similarly, every function of the type max(i,j)∈B x(i,j) can rank
at most 2n − 1 such size-change graphs, namely those where T = π2B. Ev-
ery linear function can also rank at most 2n−1 graphs, which can be argued

14

in the manner of Theorem 3.8. Thus, at least 2n − 1 different functions are
necessary to rank all loops.

Multiset orderings. In previous work on termination, it has been discov-
ered that a useful operator for constructing ranking functions is the multiset-
forming operator. Applying this operator to parameters x1, . . . , xk yields the
multiset of values of the parameters. For use in ranking functions, multisets
are endowed with an ordering; [8] introduced multiset ordering and [3] in-
troduced the multiset ordering dual. In the context of our case-study, these
additions are not significant because when an all-strict size-change graph
implies descent in multiset ordering, then the maximum of the parameters’
values descends, and descent in the dual ordering implies descent of the
minimum. Therefore we do not elaborate further on this topic.

5 The complexity of global ranking functions

In the previous sections we studied the local type of ranking functions, and
saw that exponentially many functions may be necessary. We now want to
confirm the intuition that a single, global ranking function may have to be
exponentially complex. The case of strict SCT instances is once again a
convenient case-study since a simple form of functions is known to suffice.
Lee [11] shows how to construct a global ranking function of the form

min(maxi∈S1 xi, . . . , maxi∈Sm xi)

for some sets S1, . . . , Sm. The worst-case complexity of this construction is
exponential, i.e., the number of sets Si may be exponential3. One may try to
overcome this by allowing more flexibility in the construction of the ranking
function. It is natural to allow any formula involving min and max operators,
not necessarily combined as above. There are, further, other operators that
may be useful. For example, multiset ordering [8], dual multiset ordering [3]
and lexicographic ordering are all useful for expressing size-change based
termination proofs (see [18, 3]). These can be incorporated into the ranking-
function expression by defining operators that form multisets and tuples,
associated with the appropriate order relations.

For generality, instead of fixing the set of possible operators, we shall
accept any definition that allows the ranking function values to be computed

3it is interesting to notice that the hard examples that we gave for the local approach
happen to be easy in this setting, that is, require only a linear-sized expression; however,
worst-case examples that cause exponential blowup are not hard to design.

15

in polynomial time (for example, multiset comparison can be done efficiently
by sorting). In addition, we consider ranking relations instead of ranking
functions. We further fix our domain to the natural numbers, which allows
domain-specific operations (such as addition) to be used. Having allowed for
so broad a class of ranking functions, it seems intractable to give a concrete
hard example as in the previous sections. A more tractable goal, which we
achieve in this section, is to show that a polynomial class of ranking functions
(we formalize this notion below) would contradict widely-held conjectures
in Complexity Theory. Our result is based on the PSPACE-hardness of
the SCT problem (to this end, this paper includes a new hardness proof
that applies to 1SSCT). At first it may seem that this hardness result (plus
the customary hypothesis PSPACE 6= P) implies immediately that ranking
functions for SCT instances have to be super-polynomially large. But the
implication is far from immediate, because it may be the case that it just
takes exponential time to find the ranking function. The rest of this section
shows how to derive a conclusion on the complexity of the ranking functions,
given suitable definitions and assumptions.

The approach is to consider a ranking relation, or more precisely, a
formula that represents such a relation, as a witness for termination. We
consider the complexity of verifying such a witness, and prove that it suffices
to test the witness over a small domain (namely numbers of polynomially
many bits). If we also assume that computing the relation is polynomial-
time, we find that the existence of a witness is a ΣP

2 problem, a type of
problem that under standard complexity-theoretic assumptions cannot be
PSPACE-complete.

Let us denote by F any set of formulae (technically, strings) over vari-
ables X = {x1, x2, . . . } (there should be infinitely many potential variables);
an element of F may be denoted by f . We denote by s, s′, etc. states, that
is, finite lists of integers that are interpreted as valuations of a corresponding
initial segment of X.

The set F is supposed to be provided with a decision procedure, which is
just a program p in a conventional computational model. For every f ∈ F ,
the decision procedure defines a binary relation

Rf = {(s, s′) | [[p]]〈f, s, s′〉 = true}.

For example, let F include formulae of the form “xi > x′i”. Given such
f , the program p should report whether xi does decrease from state s to
state s′. Thus, R“xi>x′

i”
is the set of transitions in which xi descends.

Definition 5.1. We say that F is a polynomially-computable class if the

16

decision procedure for F has running time polynomial in the input length.

Definition 5.2. Let G be an SCT instance. We say that a relation R is
a ranking relation for G if for every state transition s 7→ s′ in TG we have
(s, s′) ∈ R, and in addition, R is well founded.

THEOREM 5.3. A ranking relation for G exists if and only if G is a
positive instance (satisfying SCT).

Proof. It is well known that a ranking relation exists if and only if the tran-
sition system terminates. Thus this theorem just restates the completeness
of SCT.

Definition 5.4. We say that F is a polynomial class of ranking formulae
for (a class of) SCT instances if (i) F is polynomially computable and (ii)
for every positive instance G (in this class), there is f ∈ F such that Rf is a
ranking relation for G. Moreover, |f | (the string length of f) is polynomially
bounded in |G| (the string length of G).

Note that the definition involves the time to decide the relation as well as
the size of the formula. However, for “natural” operators, the computation
time is bounded polynomially in the size of the formula and the inputs, so
once we conclude that a polynomial class of ranking functions is unlikely to
exist, this will imply that the formulas themselves have to be large.

In the sequel we use the notation [m] for {0, . . . ,m− 1}.

LEMMA 5.5. Let G be a 1SSCT instance with n parameters. If G does
not satisfy SCT, there is a sequence G1, . . . , GN ∈ G with 0 < N < 2n2

,
and states s0, s1, . . . , sN−1 ∈ [Nn]n such that Gi |= si 7→ si+1 (mod N) for
0 ≤ i < N .

Informally, the lemma states that if TG does not terminate, there is
a finite cycle in the state space (note that with general programs, non-
termination does not necessarily take the form of a finite cycle). Moreover,
the lemma gives bounds on the length of the cycle and the size of the states.

Proof. If G does not satisfy SCT, there is a sequence G1, . . . , GN ∈ G such
that G = G1; · · · ;GN fails the test indicated in Theorem 2.13; that is, there
is no directed cycle in the circular variant G′. Suppose that we choose such a
sequence of minimal length; the bound N < 2n2

follows by a simple counting
argument.

We can consider a strict size-change graph as a set of constraints x′j < xi

over variables x1, . . . , xn. The absence of a cycle in such a set is equivalent to

17

the consistency of the constraints. The multipath G1 . . . GN can be viewed
as a directed graph D with nodes x

(j)
i for i = 1, . . . , n and j = 0, . . . , N .

The arcs of Gj lead from parameters x
(j−1)
i to parameters x

(j)
i . If G′ has no

directed cycle, then there is no cycle in the digraph D′ obtained from D by
identifying nodes x

(N)
i with x

(0)
i , so D′ is a consistent set of constraints over

the Nn variables. As the constraints only involve the order relation, if they
are consistent, they have a model where the values form some permutation
of [Nn]. The conclusion of the lemma is immediate.

LEMMA 5.6. Let G be a 1SSCT instance with n parameters, and let R ⊂
Nn×Nn be a well-founded relation. If G does not satisfy SCT, then there is
G ∈ G and states s, s′ ∈ [n · 2n2

]n such that G |= s 7→ s′ and ¬R(s, s′).

Proof. Let the sequence G1, . . . , GN and states s0, s1, . . . , sN−1 ∈ [Nn]n be
as in the last lemma. Since R is well founded, we cannot have R(si, si+1 mod N)
for all i. Thus a pair s, s′ as claimed exists.

Recall that ΣP
2 (also known as NPNP) is the complexity class consisting

of sets that can be decided in nondeterministic polynomial time using an
NP oracle. Alternatively, it can be characterized as the class of predicates
A(x) expressible in the form ∃py∀pzB(x, y, z) where ∃p, ∀p quantify over
polynomially-long strings and B is polynomial-time decidable. It is com-
monly presumed [14] that ΣP

2 is a strict subclass of PSPACE; a claim that
implies PSPACE = ΣP

2 is considered very unlikely to be true.

THEOREM 5.7. If there is a polynomial class of ranking formulae for
1SSCT instances, then PSPACE = ΣP

2 .

Proof. Suppose that a polynomial class of ranking formulae F is sufficient
for 1SSCT instances. Then G satisfies SCT if and only if there is an f ∈ F
with |f | < p(|G|) (for an appropriate polynomial p) such that for all G ∈ G
and all states s, s′ it holds that

G |= Rf (s, s′).

By Lemma 5.6, we can replace “for all states” by “for all s, s′ ∈ [n · 2n2
]n.”

Thus the lengths of the representations of s, s′ (with numbers in binary
notation) are polynomial in n. Hence, the 1SSCT problem lies in ΣP

2 . Since
it is hard for PSPACE (for a proof, see the following section), we obtain
PSPACE = ΣP

2 .

18

6 PSPACE-hardness of 1SSCT

PSPACE-hardness of SCT is proved in [12], but not for the subproblem
1SSCT, a gap that we close in this section. The proof is by reduction from
a well-known PSPACE-complete problem.

Definition 6.1 (NFA Universality.). INSTANCE: A nondeterministic
finite automaton A = (Q,Σ, δ, Q0, F), where as usual δ ⊆ Q × Σ × Q is
the set of transitions, Q0 the set of initial states and F the set of accepting
states.
QUESTION: Is L(A) = Σ∗?

We begin by simplifying the problem somewhat into the following

Definition 6.2 (Simplified NFA Universality.). INSTANCE: A non-
deterministic finite automaton A = (Q,Σ, δ, Q, Q). That is, an automaton
in which every state is both initial and accepting.
QUESTION: Is L(A) = Σ∗?

LEMMA 6.3. NFA Universality can be polynomially reduced to Simplified
NFA Universality.

Proof. Given any NFA A whose universality we wish to test, let # be a
symbol not in Σ. Let A′ = (Q,Σ ∪ {#}, δ′, Q,Q) where

δ′ = δ ∪ (F × {#} ×Q0).

Clearly, A′ is a Simplified NFA instance and constructed in polynomial time.
It is easy to verify that L(A′) = (Σ ∪ {#})∗ if and only if L(A) = Σ∗.

We now reduce Simplified NFA Universality to 1SSCT.
Let A = (Q,Σ, δ, Q, Q). We construct an SCT instance G with parameter

set Q and a call c for each c ∈ Σ. The size-change graph Gc contains an arc
p → q′ whenever (p, c, q) ∈ δ.

It is easy to see that A accepts a word w = c1 . . . ct if and only if the
multipath Gc1 . . . Gct has a complete thread.

CLAIM 6.4. L(A) = Σ∗ ⇐⇒ G ∈ SCT.

Proof. Assume that L(A) = Σ∗. Thus every G-multipath has a complete
thread. Let M = G1G2 . . . be an infinite multipath. Let i > 0 and consider
the finite multipaths Gi . . . Gj for all j > i. Each such multipath has a
complete thread τij ; thus there is at least one parameter q ∈ Q such that

19

infinitely many such threads begin at q. Let Qi ⊆ Q be the set of such
parameters.

Now, if q ∈ Qi, then Gi must have an arc from q into Qi+1; otherwise
a contradiction would arise since the number of threads from q would be
finite. It follows that an infinite thread can be traced by beginning at Q0

and always following arcs that lead from Qi to Qi+1. Thus, SCT is satisfied.
Now, assume that SCT is satisfied by G; then every infinite multipath

contains an infinite thread. Let M be any finite multipath and consider
Mω, i.e., the concatenation of infinitely many copies of M . From an infinite
thread in Mω one can clearly “cut out” a complete thread in one of the
copies of M . Thus, every finite multipath has a complete thread, that is,
L(A) = Σ∗.

THEOREM 6.5. The 1SSCT problem is PSPACE-complete.

Proof. The PSPACE-hardness of NFA Universality, plus the two reductions,
proves that 1SSCT is PSPACE-hard. In fact, it is PSPACE-complete, since
SCT (and therefore 1SSCT) is decidable in polynomial space [12].

7 Conclusion

We have investigated the complexity of ranking functions for SCT programs,
in the restricted case where all size-change arcs are strict (the restriction to
a single-function instance is not crucial). For this simple case, exponentially
many simple, local ranking functions suffice for the termination proof, as
is a single, exponentially complex global ranking function. The main point
of the article was to provide lower bounds, showing that this tradeoff is
inherent. The investigation led to a clarification (at least in the author’s
mind) of the way certain types of ranking functions (linear, max, min, and
others) relate to SCT analysis.

A few research questions arise. (1) Practically, include ranking functions
like max min, etc. in a ranking-function based termination analyzer. Per-
haps there are other functions to be considered? (2) Replace Theorem 5.7
by an explicit lower bound (i.e., construction of a hard instance) for an in-
teresting class of expressions. (3) Look for a polynomial familty of global
ranking functions that covers a significant variety of real-life programs.

Recent work on the last point is reported in [2].

Acknowledgement I am grateful to the Acta Informatica referees for
their help in improving this paper.

20

References

[1] James Avery. Size-change termination and bound analysis. In
M. Hagiya and P. Wadler, editors, Functional and Logic Programming:
8th International Symposium, FLOPS 2006, volume 3945 of Lecture
Notes in Computer Science. Springer, 2006.

[2] Amir M. Ben-Amram and Michael Codish. A SAT-based approach to
size change termination with global ranking functions. In C.R. Ramakr-
ishnan and Jakob Rehof, editors, 14th Intl. Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
volume 5028 of LNCS, pages 46–55. Springer, 2008.

[3] Amir M. Ben-Amram and Chin Soon Lee. Size-change analysis in poly-
nomial time. ACM Transactions on Programming Languages and Sys-
tems, 29(1), 2007.

[4] Michael Codish, Vitaly Lagoon, and Peter J. Stuckey. Testing for ter-
mination with monotonicity constraints. In Maurizio Gabbrielli and
Gopal Gupta, editors, Logic Programming, 21st International Confer-
ence, ICLP 2005, volume 3668 of Lecture Notes in Computer Science,
pages 326–340. Springer, 2005.

[5] Michael Codish and Cohavit Taboch. A semantic basis for termina-
tion analysis of logic programs. The Journal of Logic Programming,
41(1):103–123, 1999. preliminary (conference) version in LNCS 1298
(1997).

[6] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termina-
tion proofs for systems code. In Michael I. Schwartzbach and Thomas
Ball, editors, Proceedings of the ACM SIGPLAN 2006 Conference on
Programming Language Design and Implementation (PLDI), Ottawa,
Canada, June 2006, pages 415–426. ACM, 2006.

[7] Nachum Dershowitz, Naomi Lindenstrauss, Yehoshua Sagiv, and
Alexander Serebrenik. A general framework for automatic termination
analysis of logic programs. Applicable Algebra in Engineering, Commu-
nication and Computing, 12(1–2):117–156, 2001.

[8] Nachum Dershowitz and Zohar Manna. Proving termination with mul-
tiset orderings. Communications of the ACM, 22(8):465–476, august
1979.

21

[9] N. D. Jones and N. Bohr. Termination analysis of the untyped lambda
calculus. In Proceedings of the 15th International Conf. on Rewriting
Techniques and Applications, RTA’04, volume 3091 of Lecture Notes in
Computer Science, pages 1–23. Springer, 2004.

[10] N.D. Jones and A. Glenstrup. Termination analysis and specialization-
point insertion in off-line partial evaluation. Technical Report D-498,
DIKU, University of Copenhagen, Denmark, 2004.

[11] Chin Soon Lee. Ranking functions for size-change termination, 2008.
ACM Transactions on Programming Languages and Systems, to appear.

[12] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-
change principle for program termination. In Proceedings of the Twenty-
Eigth ACM Symposium on Principles of Programming Languages, Jan-
uary 2001, volume 28, pages 81–92. ACM press, January 2001.

[13] Naomi Lindenstrauss and Yehoshua Sagiv. Automatic termination anal-
ysis of Prolog programs. In Lee Naish, editor, Proceedings of the Four-
teenth International Conference on Logic Programming, pages 64–77,
Leuven, Belgium, Jul 1997. MIT Press.

[14] Christos H. Papadimitriou. Computational Complexity. Addison-
Wesley, New York, 1994.

[15] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Opti-
mization: Algorithms and Complexity. Prentice-Hall, 1982.

[16] Andreas Podelski and Andrey Rybalchenko. Transition invariants. In
Harald Ganzinger, editor, LICS’04: Logic in Computer Science, pages
32–41. IEEE Computer Society, 2004.

[17] Yehoshua Sagiv. A termination test for logic programs. In Vijay
Saraswat and Kazunori Ueda, editors, Logic Programming, Proceed-
ings of the 1991 International Symposium, San Diego, California, USA,
pages 518–532. MIT Press, 1991.

[18] René Thiemann and Jürgen Giesl. The size-change principle and de-
pendency pairs for termination of term rewriting. Applicable Algebra in
Engineering, Communication and Computing, 16(4):229–270, Septem-
ber 2005.

22

[19] Alan M. Turing. Checking a large routine. In Report of a Conference
on High Speed Automatic Calculating Machines, pages 67–69, 1948.
reprinted in: The early British computer conferences, vol. 14 of Charles
Babbage Institute Reprint Series For The History Of Computing, MIT
Press, 1989.

23

