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This paper considers an algorithmic problem related to the termination analysis of programs.

More specifically, we are given bounds on differences in sizes of data values before and after every
transition in the program’s control-flow graph. Our goal is to infer program termination via the

following reasoning (“the size-change principle”): if in any infinite (hypothetic) execution of the
program, some size must descend unboundedly, the program must always terminate, since infinite

descent of a natural number is impossible.

The problem of inferring termination from such abstract information is not the halting problem
for programs and may well be decidable. If this is the case, the decision algorithm forms a “back

end” of a termination verifier and it is interesting to find out the computational complexity of the

problem.
A restriction of the problem described above, that only uses monotonicity information (but not

difference bounds), is already known to be decidable. We prove that the unrestricted problem is

undecidable, which gives a theoretical argument for studying restricted cases. We consider a case
where the termination proof is allowed to make use of at most one bound per target variable in

each transition. For this special case, which we claim is practically significant, we give (for the

first time) an algorithm and show that the problem is in PSPACE, in fact that it is PSPACE-
complete. The algorithm is based on combinatorial arguments and results from the theory of

integer programming not previously used for similar problems.
The algorithm has interesting connections to other work in termination, in particular to methods

for generating linear ranking functions or invariants.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifi-

cation; F.2.2 [analysis of algorithms and problem complexity]: Nonnumerical Algorithms
and Problems—Computations on discrete structures

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Abstraction, program analysis, size-change graph, size-change
termination, termination analysis

1. INTRODUCTION

Termination analysis is one of the fundamental problems of software verification.
The issue also arises in designing certain meta-programs, e.g., interpreters for Logic
Programs [Naish 1985; Schreye and Decorte 1994] and partial evaluators [Jones
1988; Jones et al. 1993]. As the general halting problem is undecidable, every
method for termination analysis consists, in principle, in identifying some subprob-
lem that is decidable. This can be done in a more or less structured manner; a
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Fig. 1. Control-Flow graph and size-change graphs for example program.

structured work proceeds according to the principles advocated in Theoretical Com-
puter Science—a subproblem is identified and defined in an abstract and concise
fashion, then its decidability and complexity are determined. This paper presents
such a study that extends previous work on a method called size-change termina-
tion. In this section, we introduce the problem informally, define the aims of the
paper and relate it to previous work. We also summarize the results obtained. A
formal presentation is given in Section 2.

1.1 Size-Change termination

The Size-Change Termination principle [Lee et al. 2001] breaks the problem of
proving that a program always terminates to the following two steps: first, the
program is abstracted into a control-flow graph combined with so-called size-change
graphs. The latter describe changes in the size of data values as they propagate
across program transitions. The second step is to verify the following claim:

Every infinite computation would cause infinite descent in the size of
some data.

We assume that “size” is a natural number, hence such infinite descent is impossible,
which shows that infinite computation is impossible.

For a concrete example, consider the following program, in a simple first-order
functional language with natural numbers as data.

f(x,y) = 1g(x,y,y)
g(u,v,w) = if uv=0 then 1 else 2g(u,v-1,w+2) + 3f(u-1,w)

The three function calls have been labeled 1, 2 and 3 for reference. The control
flow graph (or call graph) is shown in Figure 1. Each call site c is associated with a
size-change graph Gc that describes how data change in size across the call (here,
the size of x is just its value). More precisely, the label δ on an arc in these graphs
represents an addition of (at most) δ to the value.

The information in the size-change graphs can be used for a termination proof,
as follows: Consider (in order to prove it impossible) any infinite path cs in the
control-flow graph.1 There are two cases to consider. Case 1: the path ends with

1This analysis treats every path in the control-flow graph as possible. This is a common approach

in static program analysis, and does not preclude the utilization of information from conditionals
in the production of size-change graphs.

ACM Transactions on Programming Language and Systems



Size-Change Termination with Difference Constraints · 3

an infinite sequence of 2’s. By looking at the corresponding size-change graph G2

we can ascertain that the value of v descends infinitely. Case 2: all runs of 2’s are
finite, i.e., the subpath 13 occurs infinitely many times. In this case, the value of
u in function g (equivalently, x in function f) descends infinitely. Since both cases
involve infinite descent, we conclude that the program always terminates.

1.2 Abstract and Conquer

An important property of the approach illustrated in the above example is its two-
stage structure: in the first stage, the subject program is abstracted to a combina-
torial structure, an instance of a system which is much simpler than a programming
language. We call it the abstract system. In the second stage, we only analyze the
abstract system, proving a property that implies the termination of the original pro-
gram. This construction mitigates an inherent problem in applying the theory of
Algorithms and Complexity to software verification: natural verification problems,
of which termination is the primary example, are undecidable. But for the problem
of deducing termination from the abstract system we may be able to provide a com-
plete algorithm, and the effort in investigating it is rewarded in obtaining a tool
that is relatively programming-language independent, as many language-specific
features are abstracted away in the first stage. We propose the following research
program:

(1) Choose a simple system that captures certain properties of programs that are
useful to solving a verification problem. Bread-and-butter examples of such
systems are finite-state machines, Petri nets and various constraint domains.

(2) For the system to be interesting, there has to be a way of abstracting ordinary
programs into such systems that is convincingly successful in retaining the
properties of interest (this stage involves an inherent loss of precision).

(3) Investigate the complexity of the appropriate decision problems over the ab-
stract system. Positive results (algorithms) mean that this system is a tool
that, together with tools for the abstraction stage, can provide an approach
for doing verification tasks; negative results, such as undecidability, are indica-
tors that the system has to be restricted or further simplified. Thus, research
produces a map of abstract systems, drawing the boundaries of decidability
and complexity that allow for informed design decisions in approaching the
verification tasks.

In this paper we consider the abstract system of size-change graphs, more prop-
erly called δSCT graphs (to distinguish them from simpler “size-change graphs”
considered in previous work); the precise definitions will be given in the follow-
ing section. Obtaining size-change graphs from a source program is an already
researched topic; for example, [Ullman and Gelder 1988; Brodsky and Sagiv 1991;
Lindenstrauss and Sagiv 1997b] all describe methods that can be used to gener-
ate such graphs for logic programs. Lindenstrauss and Sagiv’s work resulted in a
termination analyzer for Prolog programs called Termilog. However, they chose
to further simplify the abstract system by ignoring difference values (see the next
subsection for further explanation). Thus, they avoided addressing the decision
problem for the δSCT abstraction.

ACM Transactions on Programming Language and Systems
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Fig. 2. Abstract size-change graphs (SCT graphs) for our first example. Arcs
representing strict descent are marked with ↓.

1.3 A previously-studied variant: SCT

Let us revisit our initial example. It is not hard to observe that for the termination
proof, the exact values represented by the labels on the size-change graph arcs are
immaterial. We could, in fact, abstract the given size-change information further
to a finite domain so that there are only two types of arcs, one representing a non-
increase in value, and another standing for strict descent. This abstraction yields
SCT graphs [Lee et al. 2001], see Figure 2.

The main results in [Lee et al. 2001] addressed the complexity of deducing termi-
nation from SCT graphs. That paper can be seen as analyzing the abstract system
of SCT graphs in the spirit of our research program. In this case, it turns out that
practice preceded theory, in that a decision procedure for SCT graphs already forms
part of an algorithm for termination analysis of Datalog programs in [Sagiv 1991],
later extended to Prolog in the Termilog system [Lindenstrauss and Sagiv 1997b].
In these algorithms, SCT analysis is not isolated from other concerns, notably the
treatment of instantiation patterns. Sagiv and Lindenstrauss mention that SCT
is a simplification of a more precise abstraction, specifying difference constraints,
which they do not handle directly.

The termination analyzer of [Codish and Taboch 1999] implements a closure
computation, which is also the basis of the SCT algorithms mentioned above, but
in a generic way that allows for various abstract domains to be used. With the
domain of size-change graphs, the system decides SCT. In this sytem, graphs with
arbitrary size-change labels can be represented, but cannot be analyzed precisely
(the generic closure algorithm is inappropriate because the closure set may become
infinite).

1.4 δSCT

Our goal is to analyze the complexity of deciding when δSCT graphs imply termi-
nation. For a starter, here is a minimal example (due to Amir Pnueli) where the
SCT abstraction does not suffice for proving that the program terminates.

f(x,y) = if x<2 or y<1 then ... else if ... 1f(x-2,y+1)
else ... 2f(x+1,y-1)

Size-change graphs for the two calls are shown in Figure 3; it is not hard to see
that SCT graphs are insufficient to prove termination since they yield no helpful
ACM Transactions on Programming Language and Systems
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Fig. 3. Size-change graphs for Pnueli’s example.

information on the sequence G1G2. But, employing the information in the δSCT
graphs, it can be verified that an infinite sequence must cause unbounded descent;
a precise argument is given in the next section.

In general, we claim that it is interesting to investigate the δSCT abstraction
because it is more expressive than the SCT one, and existing termination analyzers
would be strengthened if the decision procedure at the end of the chain could handle
δSCT.

A point of terminology: [Lee et al. 2001] used the term SCT for the decision
problem of interest, i.e., the set of systems of SCT graphs (abstractions of programs)
that imply termination. Similarly, the set of systems of δSCT graphs that imply
termination will be simply called δSCT.

1.5 Main results in this paper

We prove that δSCT is undecidable in general, which gives a theoretical argument
for studying restricted cases. SCT, of course, is one such restriction. Here, we
consider a different restriction, where the difference values are not ignored as in
SCT. Instead, we allow the termination proof to make use of at most one bound
(incoming size-change arc) per target variable in each transition. This restriction
is motivated, first, by observing that the generality of allowing a conjunction of
bounds is often unnecessary with practical examples, and secondly by the fact that
the resulting problem is decidable. We give (for the first time) a decision algorithm
for the problem and show that it is PSPACE-complete.

2. DETAILED DEFINITIONS AND STATEMENT OF RESULTS

In this section we specify the abstract program representation which we set out to
analyze, called an annotated control-flow graph or ACG. We then specify and justify
the property of interest: what these graphs have to fulfill so that termination can
be deduced. Finally we summarize our results on the complexity of this property.

2.1 Annotated control-flow graphs and their semantics

The input to our problem is a directed control-flow graph where every arc is anno-
tated with a size-change graph. This structure is called an annotated control-flow
graph (ACG).

For convenience in explaining the relationship of these data to actual programs,
we assume that our data represent a first-order pure-functional program. Nodes of
the control-flow graph represent program functions, where each function f has a list

ACM Transactions on Programming Language and Systems



6 · A. M. Ben-Amram

of “parameters” denoted Param(f) = {f (1), f (2), . . . }. In this setting, CFG arcs
represent function calls. We identify call expressions by labels, as in the previous
examples. We write f

c→ g to indicate a call from f to g labeled c.
We should emphasize at this point that the above choice is simplistic and largely

a matter of habit: there is nothing in the δSCT formulation itself to fix the type of
source programs it applies to or the translation of programs to ACGs. For exam-
ple, a natural way to represent an imperative program is: CFG nodes are program
points, Param(f) is a set of variables, and CFG arcs represent transitions from point
to point. As for other programming styles, [Jones and Bohr 2004] and [Thiemann
and Giesl 2005] show how to effectively apply this framework to high-level func-
tional programs and term-rewriting systems, respectively, while adaption to Prolog
might follow the treatment of either [Lindenstrauss and Sagiv 1997b] or [Codish
and Taboch 1999].

It is also worth noting that a given program may be represented as an ACG in
different ways, depending on the program analysis used to create the ACG. Even
for the first-order functional language, assigning nodes to function names is not
necessarily best: assigning them to call sites may be very helpful in refining the
size-change information (arcs then denote computation paths that lead from a call
site in function f , say to g, through the body of g, up to a call site in g). For
a demonstration of the power of this approach see [Manolios and Vroon 2006].
Naturally, it can also be adapted to other programming styles.

A size-change graph G associated with a control-flow arc f → g (notation: G :
f→g) is a bipartite directed graph with source set A = Param(f); target set B =
Param(g); and a set of labeled arcs x

δ→ y with x ∈ A, y ∈ B and δ ∈ Z. It can
also be presented as a matrix G|A|×|B| where G[i, j] is the label on arc f (i) → g(j)

(there can be at most one such arc), or ∞ if there is none.
For simplicity’s sake, we let the subject program p be fixed for the rest of the

discussion. A size-change graph represents a set of assertions, also referred to as
constraints, on the relation of parameter values in the calling function and in the
call expression. Arc x

δ→ y indicates that the size of the argument passed for y
in the call to g is bounded by δ plus the size of f ’s argument x. To express this
more precisely we introduce abstract states and state transition sequences; these
are in essence descriptions of program behaviour, that are relatively programming-
language independent.

An abstract state (state for short) is a pair (f,~v) with f a function name and
~v a vector of natural numbers. The intended meaning of (f,~v) is to represent an
assignment of sizes to the arguments of f at some point during computation. That
is, ~v[i], the ith coordinate of ~v, represents the size of f (i).

A state transition (f,~v) c→ (g, ~u) is a pair of states connected by a call f
c→ g.

The transition is reachable if it can arise in a computation of p on some input.
A state transition sequence (STS) is a (finite or infinite) chain of state transitions:

sts = (f0, ~v0)
c1→ (f1, ~v1)

c2→ (f2, ~v2)
c3→ . . . ,

When arguing about a given program p, we are interested in the reachable state
transition sequences, those sequences that may arise in a computation of p. The
call sequence associated with sts is c(sts) = c1c2c3 . . ..

ACM Transactions on Programming Language and Systems
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Definition 2.1. Let p be a program, and f
c→ g a call in p. A size-change graph

G : f → g is safe for this call if for every arc f (i) δ→ g(j) in G, if (f,~v) c→ (g, ~u) is
any reachable state transition, then ~u[j] ≤ ~v[i] + δ.

A safe ACG for program p is one that includes, for every call f
c→ g in p, a graph

Gc safe for this call.

Remark: The term safe is from [Lee et al. 2001]. Using different terminology,
we would say that G above is a conservative abstraction of the transition relation
associated with call f

c→ g.
Let G be an ACG. Following [Lee et al. 2001], we define a multipath over G

(for short, a G-multipath) to be a finite or infinite sequence of graphs G1G2 . . .
that labels a corresponding directed path in the control-flow graph. For a finite
multipath M = G1 . . . Gn, we write M : f ; g if f is the source function of G1

and g the target of Gn. The length of the multipath is denoted by |M |.
A thread in such a multipath is a finite or infinite path xk

δk+1→ xk+1
δk+2→ . . . such

that for all j ≥ k, xj
δj+1→ xj+1 ∈ Gj . Note that a thread does not necessarily start

at G1. For a finite thread t, we write t : xk ; xn to indicate the initial and final
nodes (parameters) of the thread.

A thread that spans the length of the multipath is called complete.

Definition 2.2. Let t = x0
δ1→ x1

δ2→ . . . be a thread of at least n arcs.
∫ n

0
t is

shorthand for
∑n

i=1 δi. If t is finite,
∫

t is the sum over all of t.
A finite thread is descending if

∫
t < 0; an infinite thread t is of infinite descent if

limn→∞
∫ n

0
t = −∞ (the infimum limit is used since the sequence is not monotonic

in general).

2.2 δSCT

Definition 2.3. An annotated control-flow graph G satisfies the δSCT condition
if every infinite multipath contains at least one thread of infinite descent.

This condition (adapted almost verbatim from [Lee et al. 2001]), is purely com-
binatorial, in the sense that it does not refer to the program represented by G or to
the semantics of size-change graphs. However, what it intuitively means is the fol-
lowing statement: “Every hypothetical infinite computation by the program would
involve infinite descent in the size of some data, therefore infinite computation is
impossible”. The following theorem formalizes this reasoning.

THEOREM 2.4. If G is safe for program p, and satisfies δSCT, then no reach-
able state transition sequence for p can be infinite.

Proof. Assume in contradition that an infinite reachable STS for p exists,

sts = (f0, ~v0)
c1→ (f1, ~v1)

c2→ (f2, ~v2)
c3→ . . . ,

And let M = Gc1Gc2Gc3 . . . be the multipath annotating the path c(sts) in G. By
the assumption of the theorem, M has a thread t of infinite descent. A thread does
not necessarily start at the beginning of the transition sequence, but to simplify
notation, let us assume that it does. Thus

t = f
(i0)
0

δ1→ f
(i1)
1

δ2→ . . .

ACM Transactions on Programming Language and Systems
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This simplification loses no generality, because we could consider the suffix of
sts beginning at the position in which t begins. Consider the sequence of values
~v0[i0], ~v1[i1], . . . By definition of safety, we must have

~v1[i1] ≤ ~v0[i0] + δ1,

~v2[i2] ≤ ~v1[i1] + δ2,

. . .

⇒ ~vn[in] ≤ ~v0[i0] + δ1 + · · ·+ δn = ~v0[i0] +
∫ n

0

t

for all n. But since t is of infinite descent, there must be some n such that ~vn[in] < 0,
an impossibility.

This theorem has a natural converse statement: if G does not satisfy δSCT, there
is a program p (in a rudimentary programming language with natural numbers as
data) such that G is safe for p, and p has nonterminating computations. In fact,
the program can be built from G in a rather straight-forward manner; we leave the
details to the interested reader.

For theoretical statements, we use δSCT for the name of the decision problem—
formally, the set of (standardized representations of) ACG’s that satisfy the above
condition.

Having defined δSCT, the SCT condition [Lee et al. 2001] becomes a special case:

Definition 2.5. SCT is the set of instances that satisfy δSCT while including no
positive labels.

Arc labels in SCT can clearly be restricted to {0,−1}; thus there are just two
types of arcs. In [Lee et al. 2001] we gave a complexity-theoretic analysis of the
SCT problem, concluding that it was complete for PSPACE.

In this work, we analyze the complexity of δSCT. We prove (in Section 3) that
the problem is undecidable in general. This is a theoretical motivation for looking
at decidable restrictions of the problem; SCT is just such a restriction. In this
paper, we present another decidable restriction, which admits positive labels.

Definition 2.6. A size-change graph G is fan-in free if

x → y ∈ G ∧ x′→ y ∈ G =⇒ x = x′

(the notation x → y ∈ G indicates that an arc from x to y, of an unspecified label,
exists in G).

Intuitively, fan-in in G represents a conjunction of different bounds on a target
parameter. For example, a call f(min(x, y)) to function f(z) is abstracted as a
graph with two arcs: x 0→ z and y

0→ z. Another source of fan-in is the analysis of
the guards of a call (the call context). Consider the following program fragment:
(from [Lee 2002])

f(d,s) = if d=hd(s) then g(hd(s)) else f(d,tl(s))

In analyzing the call from f to g, the condition d=hd(s) is known to hold and thus
we obtain a graph with arcs s −1→ x as well as d 0→ x.

Despite their intuitive appeal, it appears that in analysis of “natural” programs
such conjunctions play a lesser role than one might suspect. As a (somewhat
ACM Transactions on Programming Language and Systems
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anecdotal) evidence, a study [Ben-Amram and Lee 2007] of 123 examples from
previous work on Prolog programs [Plümer 1990; Schreye and Decorte 1994; Apt
and Pedreschi 1994; Bueno et al. 1994; Lindenstrauss and Sagiv 1997a] revealed
material occurrence of fan-in in only a single (contrived) example.2 In fact, this
scarcity of fan-in may be due to the fact that, unlike min, other common binary
operators do not create fan-in, because of the fact that our constraints only express
upper bounds. Thus, max(x, y) is bounded neither by x nor by y, and the same goes
for x+y.

In Section 4 we prove that δSCT instances without material fan-in form a de-
cidable set. In fact we pinpoint its complexity class: it is complete for PSPACE.
Section 5 describes a (somewhat surprising) connection of our algorithm to cer-
tain termination analyses based on the concept of ranking functions, as well as
some other related ideas. Section 6 concludes with some perspectives and open
problems.

2.3 Another example

There is a common pattern in programs that gives rise to δSCT instances that are
not SCT instances. It involves loops that move elements from list to list, so that
while one decreases in size, the other increases; at some points, a full list trades
places with an empty one. For an example, consider the following functional-
language implementation of QuickSort.

sort xs = case xs of
[] -> []
(x:xt) -> partition xt [] [] x

partition xs lt rt pvt = case xs of
[] -> (sort lt) ++ [pvt] ++ (sort rt)
(x:xt) -> if (x < pvt)

then partition xt (x:lt) rt pvt
else partition xt lt (x:rt) pvt

An obvious representation of this program’s data flow in size-change graph form
includes two function names: sort with a single input parameter xs, and partition
with input parameters pvt, xs, lt, rt. These graphs are as shown in Figure 4.
The reader may verify that this size-change graph set does not imply termination:
in fact, an infinite multipath such as G1G4G1G4G1G4 . . . has no infinite thread.
Interestingly, a size-change termination proof can be obtained by employing a some-
what non-obvious trick in constructing the size-change graphs. The trick is to make
the constant [] appearing in the program into a parameter, so it participates in
the size-change graphs, as shown in Figure 5. Specifically, G1 represents a call in
which [] is passed for both rt and lt, hence the arcs connecting these parameters.
The calls represented by G4 and G5 are dependent on the condition xs = []. This

2a “material occurrence” is one which cannot be eliminated simply by deleting some arcs without

affecting the termination argument. In [Ben-Amram and Lee 2007] we defined a “clean-up”
procedure that proved successful in eliminating immaterial fan-in in our SCT benchmark. The

interested reader is referred to that article, and encouraged to verify that the same procedure
works for δSCT.
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Fig. 4. Size-change graphs for the Quicksort program.
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Fig. 5. Size-change graphs for the Quicksort program, improved

allows an analyzer to deduce the arc xs
0→[]. The reader may find it interesting to

verify that δSCT is now satisfied.
It is easy to see that this example could also be reduced to SCT by including

a node for the sum of the lengths of lt, rt and xs in partition. This would,
of course, necessitate an analyzer that can discover that this particular sum is
significant; in Section 5 we show that the mathematics involved in discovering such
an invariant is related to solving a restricted case of δSCT, though the methods are
not interchangeable in general.

3. UNDECIDABILITY OF THE GENERAL CASE

In this section we prove that δSCT is undecidable in general. We do this by a reduc-
tion from a well-known undecidable problem, the halting problem for inattentive
(input-free) counter programs, defined next.

A counter program is an instruction sequence p = 1:I1 2:I2...m:Im specifying
a computation on variables X1,. . . ,Xk. The variables hold natural numbers. A state
of the program is (`,~v) where ` ∈ {1, 2, . . . ,m} represents a program location and
~v represents the values of X1,. . . ,Xk.

Instructions I` have three forms: inc Xi, dec Xi, and if Xi then `′ else `′′.
Here 1 ≤ i ≤ k and `, `′, `′′ ∈ {0, 1, 2, . . . ,m}.

The program begins at instruction 1 and stops when control flows past instruction
m, or when a branch to label 0 is taken. The if instruction branches to `′ if
the value of Xi is positive, or to `′′ if it is zero. A dec applied to zero may be
defined to produce zero, but we prefer to avoid this case completely and assume
ACM Transactions on Programming Language and Systems
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that the program never decrements a zero value (tests can be inserted into any
given program to ensure this). In an inattentive (input-free) program, the initial
value of all variables is 0.

The following set is known to be undecidable:

H = {p | p is an inattentive counter program that halts}.

THEOREM 3.1. H can be reduced (by a computable many-one reduction) to
the complement of δSCT. Hence, δSCT is undecidable.

The rest of this section describes the reduction. Let program p = 1:I1 2:I2...m:Im

with variables X1,. . . , Xk. We translate p into a program p∗ in a simple first-order
functional language computing over the integers. A δSCT instance is then pro-
duced from p∗ in a straight-forward way (in fact, for the purpose of this proof, the
program is just a convenient manner of specifying the instance).

Program p∗ will have functions {F0, F1, . . . , Fm}, each one of 2k + 2 parameters
named X1, X1, . . . , Xk, Xk, E, Z. The program is constructed so that in its size-change
graph representation, every infinite multipath will have infinite descent, unless it
can be broken into finite segments that describe terminating computations of p
(this logic also underlies the PSPACE-hardness proof in [Lee et al. 2001]).

The roles of the parameters can be described as follows: Xi is meant to simulate
a variable of p. The corresponding Xi is meant to contain the negated value of Xi

(always non-positive). Parameter E is used as a ground line (Erdung) and supplies
a value which the simulation treats as zero. Thus, what actually happens is that
Xi − E simulates p’s variable Xi while Xi − E is its negation. Parameter Z is used
to count simulated steps (downwards), so that a computation that simulates a
nonterminating run of p will yield a thread of infinite descent.

We next write down the program p∗, using an obvious programming language.
The program contains an initial function F0 plus a function for every instruction
of p.

Initial function F0

F0(X1, X1, . . . , Xk, Xk, E, Z) =
F1(E, E, . . . , E, E, E, E)

Function F`, for instruction ` : inc Xi

F`(X1, X1, . . . , Xi, Xi, . . . , Xk, Xk, E, Z) =
F(`+1) mod (m+1)(X1, X1, . . . , Xi + 1, Xi − 1, . . . , Xk, Xk, E, Z− 1)

Function F`, for instruction ` : dec Xi

F`(X1, X1, . . . , Xi, Xi, . . . , Xk, Xk, E, Z) =
F(`+1) mod (m+1)(X1, X1, . . . , Xi − 1, Xi + 1, . . . , Xk, Xk, E, Z− 1)

Function F`, for instruction ` : if Xi then `′ else `′′

F`(X1, X1, . . . , Xk, Xk, E, Z) = if Xi > 0
then F`′(X1, X1, . . . , Xk, Xk, min(E, Xi − 1), Z− 1)
else F`′′(X1, X1, . . . , Xk, Xk, min(E, Xi), Z− 1)

ACM Transactions on Programming Language and Systems
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Program p: 1: inc X; 2: if Y then 1 else 0

Fig. 6. Size-change graphs created by the reduction from a simple counter program.
Zero labels are omitted to avoid clutter.

We let G be the set of size-change graphs describing (in the most straight-forward
way) the dataflow of p∗ (note that min is an operator that creates fan-in in the
size-change graph). Figure 6 shows the graphs produced for a simple program with
two variables. One can easily observe certain properties, such as, all size-change
graphs have an arc E

0→ E, and all but the graph for F0 have Z
−1→ Z. A deeper

property is expressed in the following lemma:

LEMMA 3.2. Suppose that the (unique) computation of program p is described
by the STS σp = (`1, ~v1)→ (`2, ~v2)→ . . ., with (`1, ~v1) = (1, (0, . . . , 0)), and define
`0 = 0. Then program p∗, started with a call to F0 in which the value e is passed
for E, goes through the STS

(F0, ~u0)→(F`1 , ~u1)→(F`2 , ~u2)→ . . .

where

~ui = (e + ~vi[1], e− ~vi[1], e + ~vi[2], e− ~vi[2], . . . , e− ~vi[k], e, e− i).

The corresponding multipath M = G1G2 . . . , with Gi : F`i−1 → F`i
further satisfies:

for all i ≤ |M | and j ≤ k, multipath Mi = G1G2 . . . Gi has a thread tj : E ; Xj

with
∫

tj = ~vi[j] and a thread t̄j : E ; Xj with
∫

t̄j = −~vi[j].

Verifying this is straightforward, so we omit a formal proof.

Correctness of the reduction. We prove that p ∈ H if and only if p∗ /∈ δSCT.
Suppose first that p does terminate. Then program p∗, initialized with E = 0,
simulates p until its termination, upon which it reaches F0 again with 0 for E and
repeats ad infinitum. Thus an infinite call sequence of p∗ is obtained which does
not have infinite descent.
ACM Transactions on Programming Language and Systems
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Suppose now that p does not terminate, and let σp be its (infinite) STS. Consider
any infinite p∗ call sequence and its corresponding G-multipath. If the sequence does
not include F0 infinitely often, the multipath clearly has infinite descent in Z. Thus,
we consider a sequence that consists of infinitely many finite segments, all starting
and ending at F0. We will show that over every such segment there is a thread,
starting and ending at E, with a negative integral. Therefore, the concatenation of
all these segments has infinite descent. Let G1G2 . . . Gn be such a segment, with
Gi : F`i−1 → F`i

, and `0 = `n = 0 (and, of necessity, `1 = 1). Note that σp

also begins with `1 = 1; but it never reaches location 0. So, consider the first
i such that `i differs from the ith label in σp (hence, up to `i−1 the sequences
match). This indicates that F`i−1 is a function that has more than one possible
successor—necessarily one that represents an if instruction. Moreover, `i is the
wrong successor. Suppose that the instruction is if Xj then `′ else `′′. Let the
(i − 1)st state in σp be (`i−1, ~v); then either ~v[j] > 0 and `i = `′′, or ~v[j] = 0 and
`i = `′. In the first case, the lemma provides a thread t̄j over G1 . . . Gi−1 such
that

∫
t̄j < 0; graph Gi : F`i−1 → F`i

has an arc Xj
0→ E, which gives a descending

thread from E back to E. This can be completed with arcs E
0→ E up to the end

of the segment considered. Similarly, in the other case, we have a thread tj with∫
tj = 0 and an arc Xj

−1→ E which forms a descending thread from E back to E.
As previously stated, this shows that the infinite G-multipath has infinite descent,

completing the correctness proof for the reduction.

Remark. As 2-counter programs are universal [Jones 1997], the above proof shows
that δSCT is already undecidable for subject programs with a constant number (six)
of parameters in every function. In contrast, the decidable variants (SCT, and δSCT
without fan-in, discussed in the next section) move to a lower complexity class when
this number is constant (for more details see Section 4).

4. A DECIDABLE RESTRICTION OF δSCT

The goal of this section is to show that δSCT with fan-in free size-change graphs,
or more generally without material fan-in (as defined later), constitutes a decidable
problem. Our main conclusion is that the problem is PSPACE-complete.

In the course of studying this problem, it became necessary to introduce numerous
auxiliary definitions and lemmata. To ease the reading, the section is internally
organized as follows: first, in Section 4.1 we give basic definitions and results which
recast the problem from its original infinitary formulation (Definition 2.3) into a
finitary form. This opens the way for its solution. The following subsections develop
the solution. An outline of the development is deferred to Section 4.2, since it relies
on Section 4.1.

4.1 Definitions and the basic theorem

Throughout this section, we mostly assume the subject ACG G to be fixed (saving
the repetitive “let G be an ACG. . . ”). We also assume the control-flow graph to
be strongly connected. This is no loss of generality, since an infinite multipath
must eventually stay within a single strongly connected component (SCC) of the
control-flow graph. Thus, in general, we can process one SCC at a time.
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Size-change graph composition is denoted in [Lee et al. 2001] by a semicolon. We
will use the same notation, though we have to redefine it to take care of integer
labels. In fact, the matrix notation shows that the composition operation is the
familiar matrix “min-sum product”.

Definition 4.1. Consider two size-change graphs G1 : f0→f1 and G2 : f1→f2.
The composition G1;G2 is a graph G with source function f0 and target f2. Its
arcs and labels are defined by

G[i, j] = min
k

G1[i, k] + G2[k, j].

OBSERVATION 4.2. If G1, G2 are fan-in free then so is G1;G2.

Let M = G1G2 . . . Gn be a finite multipath. By M we denote the labeled size-
change graph resulting from “collapsing” the multipath by composition: M =
G1;G2; · · · ;Gn. Observe that every arc x → y in M represents one or more com-
plete threads x ; y in M ; conversely, every complete thread t : x ; y in M is
represented by an arc x

δ→ y in M , where δ ≤
∫

t (more precisely, δ =
∫

t unless
the same arc also represents another thread, of a smaller sum).

The empty multipath beginning and ending at function f is denoted Idf and we
define Idf to be the size-change graph with arcs x

0→ x for all x ∈ Param(f).
Concatenation of multipaths is written down by simple juxtaposition, e.g., M1M2.

This notation implies that the target function of M1 is the source function of M2.
We call two multipaths M1,M2 equivalent if M1 = M2. We also write this as

M1 ≡ M2. For size-change graphs G1, G2 we write G1 ' G2 if the graphs are
identical (labels ignored). We call G idempotent if G;G ' G. We call a multipath
M cyclic if M is idempotent.

Let G be a size-change graph with source and target identical. An arc of the
form x → x in G is called an in-situ arc. By bGc we denote the in-situ part of G,
i.e., the subgraph consisting of all in-situ arcs of G.

LEMMA 4.3. Let G be idempotent and fan-in free. Then G;G = bGc;G.

Proof. First, we observe that as bGc is a subgraph of G,

(bGc;G)[i, j] ≥ (G;G)[i, j] (1)

for all i, j.
Next, let (G;G)[i, j] = δ < ∞; in graph notation, i

δ→ j ∈ G;G. Thus there is
a k such that G[i, k] + G[k, j] = δ, and in particular k → j ∈ G. However since
G;G ' G, and G is fan-in free, we must have k = i. Thus, G[i, i] + G[i, j] = δ, but
G[i, i] is also bGc [i, i]. Hence

(bGc;G)[i, j] ≤ bGc [i, i] + G[i, j] = (G;G)[i, j]

and by (1) we have equality.

A sign graph is a bipartite graph, similar to a size-change graph, however with
labels in {↓, ↓=, l} rather than Z. A sign graph is an abstraction of a δSCT graph;
we denote by α the abstraction operator, defined as follows: for every size-change
graph G, α(G) is a matrix (that can similarly be interpreted as a bipartite labeled
ACM Transactions on Programming Language and Systems
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graph) with

α(G)[i, j] =


↓ G[i, j] < 0
↓= G[i, j] = 0
l G[i, j] > 0
∞ G[i, j] = ∞.

The underlying graph of α(G) has an arc i → j whenever α(G)[i, j] 6= ∞. It is the
same graph as G (ignoring labels), and we call α(G) idempotent if and only if G is
(so, in both cases, idempotence ignores labels).

The decision procedure we provide for decidable cases of δSCT is based on the
following theorem:

THEOREM 4.4. (Basic Theorem) A strongly connected ACG with fan-in free
size-change graphs satisfies δSCT if and only if for every cyclic multipath M , M
has an in-situ arc with a negative label.

Proof. We begin with the “if” direction. Let G be an ACG with fan-in free
graphs such that for every cyclic G-multipath M , M has an in-situ arc with a
negative label. We will prove that G ∈ δSCT. To this end, let I = G1G2G3 . . .
be any infinite G-multipath. For every pair s < t of positive integers, let Ms,t =
Gs . . . Gt. For every possible sign graph G over the functions and parameters of G,
define the class CG of pairs (s, t) by

CG = {(s, t) |α(Ms,t) = G}

Note that the set of sign graphs over a given set of parameters is finite, hence
so is the number of classes just defined. Since the set of pairs (s, t) is infinite,
Ramsey’s theorem [Ramsey 1930; Graham 1981] shows that there is an infinite set
I of positive integers such that all pairs (s, t) with s, t ∈ I are in the same class
CG◦ .

Consider now three elements r, s, t ∈ I, with r < s < t; then

α(Mr,s) = α(Ms,t) = α(Mr,t) = G◦

and hence, in particular,

Mr,s ' Ms,t ' Mr,t

which shows that Ms,t is idempotent. By our assumption, it has a descending in-

situ arc; i.e., G◦ has an arc x
↓→ x. Thus every Mi,j with i, j ∈ I has an arc x

δ→ x
with δ < 0. It clearly follows that I has an infinitely descending thread, as was to
be proved.

For the converse implication, assume that G ∈ δSCT, and let M be any cyclic
multipath. We shall prove that M has a descending in-situ arc.

Consider the infinite multipath Mω (M repeated infinitely many times). By
assumption, it has a thread t of infinite descent. Let x(i) be the parameter visited
by this thread at the start of the ith copy of M . Thus x(i) → x(i+1) is always an
arc of M . As in the proof of Lemma 4.3, we deduce that in fact x(i) = x(i+1).
I.e., the thread exits every copy of M at the same parameter x. Moreover, since all
size-change graphs in this instance are fan-in free, the endpoints uniquely determine
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the thread; thus, there is no doubt that
∫ |M |
0

t = δ where δ is the label on the arc
x → x of M .

To complete the proof of the theorem, assume that δ ≥ 0, and let ∆ be the sum
of all negative labels in the segment of t passing through a single copy of M . Then
for any n ≥ 0 we have ∫ n

0

t ≥
⌊

n

|M |

⌋
δ + ∆ ≥ ∆,

and t can not have infinite descent, a contradiction to the choice of t. We conclude
that δ < 0, i.e., M has a descending in-situ arc.

A consequence of this theorem is that an algorithm for δSCT can proceed by
searching for a finite counterexample to the termination criterion, namely a cyclic
multipath with no in-situ descent. A similar theorem holds for the SCT variant [Sa-
giv 1991; Lee et al. 2001], where we further observe that having restricted the set of
labels to {0,−1}, the set of possible collapsed multipaths M becomes finite. This
set can be effectively computed, and we obtain the so-called “closure algorithm”
for deciding SCT.

In the δSCT problem, label values do matter and therefore the set of collapsed
multipaths is infinite. This makes its solution more difficult.

4.2 Solution Outline

Our problem, thus, is to decide whether a counterexample-multipath can be gener-
ated by a set of size-change graphs. Since the set of collapsed multipaths that can
be generated is typically infinite, we are looking for a finite representation of this
infinite set that can be effectively tested for the counterexample.

The complication in this stage stems from the existence of two aspects of size-
change graph composition: there is an arithmetic aspect in the composition, involv-
ing the addition of labels. Then there is a combinatorial aspect, having to do with
the shape of the graph. The two aspects interact, of course.

In the next subsection we tackle the arithmetic aspect in isolation by restrict-
ing the graphs to a simple form, called in-situ graphs (corresponding to diagonal
matrices). With such simple graphs, the combinatorial aspect is trivial and the
arithmetic aspect can be tackled quite easily since the net effect of a multipath is
expressible as a linear form.

Next, in Section 4.4, we develop a way to separate the aspects so that instead of an
infinite “closure set” we have a finite set of graphs (ensuing from the combinatorial
aspect) plus linear forms (for the arithmetic one). This is achieved by a sort of
“factorization” of multipaths. However, a straight-forward application of the idea
does not yet reduce the search space to a finite set of multipath-representations.
It takes a finer analysis, combining both combinatorial properties (introducing a
notion of “reduction” for multipaths) and linear-algebraic properties (bounds on the
size of solutions) to show that one needs look no further than a certain effectively-
computable bound. With this result, the complexity of the decision problem can
be established.
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4.3 In-situ graphs

An in-situ size-change graph is one that only contains in-situ arcs. Let us consider a
very simple case of the δSCT problem: there is a single function and all size-change
graphs are in-situ (Pnueli’s example from Section 1 has this form, as do Petri Nets
[Jones et al. 1977]).

Let G = {G1, . . . , Gn} be such an instance. Observe that in-situ graphs always
commute, i.e., Gi;Gj = Gj ;Gi. It follows that every G-multipath has an equivalent
“normal-form” multipath M = Gx1

1 . . . Gxn
n , where Gx is G repeated x times.

It is easy to see that M is very easy to compute, also symbolically when the
xi’s are formal variables. Checking whether a non-descending multipath exists
boils down to checking whether the following system of inequalities has a nontrivial
solution:

G1[j, j] · x1 + · · ·+ Gn[j, j] · xn ≥ 0, 1 ≤ j ≤ |Param(f)|
x0, . . . , xn ≥ 0.

It follows that this subproblem of δSCT is decidable by Linear Programming tech-
niques.3 For example, Pnueli’s example (Figure 3 on Page 5) yields the following
constraints

−2x1 + x2 ≥ 0
x1 − x2 ≥ 0
x1, x2 ≥ 0

having only the trivial solution (0, 0).

4.4 Deciding δSCT with fan-in-free graphs

We begin by presenting some tools for reasoning about multipaths of fan-in-free
size-change graphs. The assumption of fan-in-freedom is tacitly assumed in the
rest of this subsection whenever a multipath is mentioned.

Definition 4.5. Let G : f → f be in-situ, and M : f ; g a finite multipath.
We define G

M to be a size-change graph with source and target function g and arcs
defined by the following rule: for all y ∈ Param(g) and n ∈ Z, y

n→ y ∈ G
M if and

only if there is x ∈ Param(f) such that x
n→ x ∈ G and x → y ∈ M .

LEMMA 4.6. Let G : f → f be in-situ, and M : f ; g a finite multipath; then
GM ≡ M G

M .

Definition 4.7. For fan-in-free graphs G : f → f,H : f → g we write G ≺ H if
x → z ∈ H ⇒ x → x ∈ G for all parameters x, z.

LEMMA 4.8. G ≺ H ⇐⇒ G;H ' H.

Proof. (⇒) Assume G ≺ H. If x → z ∈ G;H, then for some y, x → y ∈ G
and y → z ∈ H, and G ≺ H (plus fan-in freedom) implies x = y, so the arc x → z
exists in H. If x → z ∈ H, clearly x → z ∈ G;H.

3Essentially we are interested in integer solutions, but since this system is homogenous, any non-

trivial solution implies an integer-valued one and so ordinary Linear Programming suffices. Terms
of the form ∞· xi, not allowed in ordinary LP formulations, can be handled by separately testing

the cases xi = 0 and xi > 0. In the former case, column i can be omitted, and in the latter, we
omit a row.
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(⇐) Assume G;H ' H and x → z ∈ H. Then x → z ∈ G;H, so there are
arcs x → y ∈ G and y → z ∈ H. By fan-in freedom, y = x. We conclude that
G ≺ H.

Definition 4.9. Let M be a multipath and consider a division of M into three
segments: M = ABC, where B is not empty. We call part B a redex if B : f ; f
for some function f and also B ≺ C. If B is a redex, reduction of M using B

produces M ′ = AC bBc
C .

We remark that A or C (or both) can be empty. If C is empty, M ′ = AbBc.

LEMMA 4.10. If M ′ is obtained from M by reduction, M ≡ M ′.

Proof. The definition of ≺ can be used to show M ≡ AbBcC. Lemma 4.6
completes the proof.

Definition 4.11. A multipath M is reducible if M can be expressed as ABC,
such that B is a redex. We call M irreducible if it is not reducible.

Reducing a multipath several times can result in collecting several in-situ graphs
at its end. We group equal graphs together, using power notation as in the last
subsection.

Definition 4.12. An extended multipath has the form MGx1
1 . . . Gxn

n where M :
g ; f is a multipath, each Gi : f → f an in-situ graph and each xi a positive
integer. An extended multipath is normal if
(i) M is an irreducible G-multipath,
(ii) for each i, Gi = bBic for some irreducible G-multipath Bi, and
(iii) the Gi are pairwise distinct.

A formal multipath is an expression E = MGx1
1 . . . Gxn

n , where the exponents
are formal variables, that also fulfills Requirements (i)–(iii). For natural numbers
k0, k1, . . . , kn,

E(k0, k1, . . . , kn)
def
= Mk0Gk1

1 . . . Gkn
n .

Naturally, k0 can be greater than 1 only if the source and target functions of M
are the same.

LEMMA 4.13. For every cyclic G-multipath M : f ; f , a formal multipath
E = M ′ ∏n

i=1 Gxi
i exists such that:

(i) There are positive numbers r1, . . . , rn such that E(1, r1, . . . , rn) ≡ M .
(ii) There are nonnegative numbers b0, . . . , bn such that for all sequences (l0, . . . , ln)
with l0 ≥ b0, . . . , ln ≥ bn, E(l0, l1, . . . , ln) is equivalent to some cyclic G-multipath.

Informally, this lemma shows that a multipath can be “factored” into an irre-
ducible part plus a set of in-situ parts. Further, by modifying the exponents of the
in-situ parts, other valid multipaths are obtained. A formal multipath E satisfying
the lemma is called a scalable representation of M . We also say, more briefly, that
E represents M .

We will prove this lemma as part of a stronger proposition (Lemma 4.21) further
down this section. First, let us show how it contributes to solving δSCT.
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THEOREM 4.14. Let G be a strongly connected ACG with fan-in-free size-
change graphs. G satisfies δSCT if and only if for every function f , and every
scalable representation E = M

∏n
i=1 Gxi

i : f ; f of a cyclic G-multipath, there is
no solution to the Integer Linear Programming problem:

G0[j, j] · x0 + G1[j, j] · x1 + · · ·+ Gn[j, j] · xn ≥ 0, 1 ≤ j ≤ |Param(f)|
x0, . . . , xn > 0 (2)

where G0 = bMc.

Proof. The theorem follows easily from Theorem 4.4 (The Basic Theorem) and
Lemma 4.13 above, noting that any solution to (2) can be multiplied by any positive
integer and remain a solution (this allows for applying Part (ii) of Lemma 4.13).

Consider a formal multipath E = M
∏n

i=1 Gxi
i . Call E feasible if there are

numbers ri such that M
∏n

i=1 Gri
i is equivalent to some G-multipath. As we show

below, the set of feasible extended multipaths is finite; hence, in particular, the set
of scalable representations of G-multipaths is also finite. Intuitively, this provides
a method to decide δSCT, as follows:

(1) Construct the set E of all scalable representations of G-multipaths.
(2) Test each one according to Theorem 4.14.

Example. Consider the following program, with the obvious size-change graphs
G1 and G2 for calls 1 and 2 respectively.

f(x,y) = if x,y>1 then 1f(x-1,x+1) + 2f(y-2,y-1) else 1

There are four irreducible nonempty multipaths: G1, G2, G1G2 and G2G1. All
are cyclic. The set E contains, in addition, each of these four multipaths followed
by the in-situ factor {x −1→ x, y

−1→ y}x.
Checking these multipaths according to Theorem 4.14, we find that δSCT is

satisfied.
We next derive some combinatorial bounds for irreducible multipaths, leading to

the desired finite search space for the decision problem. For simplicity in calcula-
tions, we assume that all functions in the subject program have the same number k
of parameters. We will use m for the number of functions, and ∆ for the maximum
absolute value of any size-change label in G (we may assume that both positive and
negative labels are present, for otherwise the problem is at most as hard as plain
SCT). We omit the proofs of the easier claims.

LEMMA 4.15. The number of different unlabeled fan-in-free graphs with k pa-
rameters on both sides is (k + 1)k.

LEMMA 4.16. For any given in-situ graph G : f → f , the set of (labeled)
graphs G

M (with M ranging over all multipaths with source f) has at most (k + 1)k

elements.

LEMMA 4.17. Every multipath of length greater than L = (k + 1)k · m is re-
ducible.

Proof. For a multipath longer than L, it suffices to consider its suffix of length
L. So let M = G1G2 . . . GL. Let f be an ACG node visited most often in this
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multipath. It is visited at least (k +1)k +1 times. Consider unlabeled graphs Ki '
Gi; · · · ;GL, for all i such that Gi has source function f . By the pigeonhole principle,
there are i < j such that Ki = Kj , implying (by Lemma 4.8) Gi . . . Gj−1 ≺
Gj . . . GL.

LEMMA 4.18. Let the extended multipath MGx1
1 . . . Gxn

n be normal. Then
(i) the absolute values of size-change labels in all Gi are bounded by L∆, and
(ii) n ≤ (2L∆ + 2)k.

Proof. Claim (i) follows from Definition 4.12 (Part two) and Lemma 4.17.
Claim (ii) is obtained by noting that every graph Gi is specified by k arc labels
from {−L∆, . . . ,+L∆,∞}.

The last two lemmas suffice for bounding the quantity and length of multipaths in
E , but we do not dwell on this point because the bounds obtained are unsatisfactory.
Tighter results can be obtained by more elaborate analysis, using two sources of
information. First, bounds from the theory of Integer Linear Programming.

We use the following lemma (adapted from [Papadimitriou 1981]).

LEMMA 4.19. Let Ak×n be a matrix with integer entries of absolute value at
most a. Then if Ax ≥ 0;x > 0 has an integer solution, it also has one satisfying∑n

i=1 xi ≤ 2(n + k)(ka)2k+1.

Applying this to the ILP problem (2), we obtain

LEMMA 4.20. Assume that for some normal extended multipath MGx1
1 . . . Gxn

n

there is a solution to the Integer Linear Programming problem (2). Then there is
such a solution that satisfies

∑n
i=1 xi ≤ 22k+1(m∆)3k+1(k + 1)3k2+3k+1.

Proof. Problem (2) has the form Ax ≥ 0;x > 0 with A of dimension k×(n+1).
From Lemma 4.18, the absolute value of entries is bounded by L∆ and for their
number we have the bound n ≤ (2L∆ + 2)k. The bound of Lemma 4.19 becomes

2(n + 1 + k)(kL∆)2k+1 ≤ 2((2L∆ + 2)k + 1 + k)(kL∆)2k+1

≤ 2(4L∆)k(kL∆)2k+1

= 22k+1k2k+1(m∆)3k+1(k + 1)3k2+k

< 22k+1(m∆)3k+1(k + 1)3k2+3k+1.

To make use of this result we need a more precise relation between G-multipaths
and normal extended multipaths.

LEMMA 4.21. For every cyclic G-multipath M : f ; f , a formal multipath
E = M ′ ∏n

i=1 Gxi
i exists such that:

(i) There are positive numbers r1, . . . , rn such that E(1, r1, . . . , rn) ≡ M .
(ii) There are nonnegative numbers b0, . . . , bn such that for all sequences (l0, . . . , ln)
with l0 ≥ b0, . . . , ln ≥ bn, E(l0, l1, . . . , ln) is equivalent to some cyclic G-multipath
of length bounded by L

∑n
i=0 li, where L = (k + 1)k · m. The numbers bi satisfy:∑

i bi ≤ (k + 1)k ·m.
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As the proof is lengthy and would distract us from the main theme, it is given in
appendix A.

We are now ready to prove a complexity classification of the δSCT problem
without fan-in. This is achieved (perhaps surprisingly) via an algorithm that does
not use formal multipaths at all.

THEOREM 4.22. The δSCT problem for fan-in-free graphs is in PSPACE.

Proof. Let ACG G with fan-in free size-change graphs be given. The Basic
Theorem shows that deciding δSCT is equivalent to determining if there is a cyclic
multipath that testifies against size-change termination by having no descending
in-situ arc. Assume that such a multipath M does exist. By the last lemma it
has a scalable representation E = M ′ ∏n

i=1 Gri
i , such that the corresponding ILP

problem (2) has a solution. Now, by Lemma 4.20, there is a solution satisfying:
n∑

i=0

xi ≤ 22k+1(m∆)3k+1(k + 1)3k2+3k+1.

Does this solution yield a G-multipath? Not necessarily, because of the lower bounds
bi in Part (ii) of Lemma 4.21. However, as all exponents are positive, we multiply
by

∑
i bi and obtain one that does. The sum of the exponents thus becomes

(
n∑

i=0

bi)(
n∑

i=1

xi) ≤ (k + 1)k ·m · 22k+1(m∆)3k+1(k + 1)3k2+3k+1.

Lemma 4.21 further ensures that we can convert the extended multipath obtained
to a G-multipath whose length is at most L times the sum of the exponents, so, to
conclude, we have shown that if a counterexample to termination (according to the
Basic Theorem) exists, there is one of length at most

B(G) = (k + 1)2k ·m2 · 22k+1(m∆)3k+1(k + 1)3k2+3k+1.

A simple nondeterministic algorithm for the complement of δSCT is to first compute
this bound, then nondeterministically follow a multipath M of at most such length
and verify that it is a counterexample to the condition in Theorem 4.4.

The space usage of this algorithm can be optimized by observing that it suffices
to keep in memory M and the current length of M , rather than the complete
multipath. The length requires at most dlog B(G)e bits of storage, while for M we
need at most k(dlog(∆B(G)) + 1e) by the familiar argument on the absolute value
of labels. Both bounds are polynomial in k, log m and log ∆. Thus the algorithm
places the problem in NPSPACE, which by Savitch’s theorem equals PSPACE.

We now observe that the PSPACE-hardness proof for SCT in [Lee et al. 2001]
uses fan-in-free graphs. Which gives

COROLLARY 4.23. The δSCT problem for fan-in-free graphs is PSPACE-
complete.

Observe in passing that the above observation means that for SCT, the presence
of fan-in does not affect the complexity class of the problem, quite unlike the case
for δSCT.
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The algorithm suggested by the proof of Theorem 4.22 is not likely to be a good
choice for a practical application of δSCT: the use of Savitch’s theorem results in
regenerating parts of the solution exponentially many times, in order to keep the
space bound polynomial. A more useful approach is probably to allow for more
space in order to avoid recomputation, i.e., revert to a closure computation as in
previous termination analyzers. We now describe this approach in more detail.

Algorithm 4.1. Closure-based algorithm for δSCT over fan-in free graphs.

This algorithm constructs the set S of all δSCT graphs M for some G-multipath
M of length bounded by B(G). If an idempotent graph with no in-situ descent is
not encountered, δSCT is satisfied.

The algorithm labels each graph G by the length of the corresponding multipath,
in order to make use of the length bound. Thus, it actually maintains a set S ′ of
graphs with lengths:

(1) Initialize S ′ to include (G, 1) for every G ∈ G.
(2) For any (G, i) : f → g and (H, j) : g → h in S ′, if i + j ≤ B(G), and no pair

(G;H, k) exists yet in S ′, include (G;H, i + j) in S ′. If (G;H, k) is in S, just
replace the k with i + j if i + j is smaller.

(3) The above step should be repeated until no more changes can be made to S ′.

4.5 Some further complexity-theoretic observations

4.5.1 Fixed-Parameter Complexity. An interesting property that Algorithm 4.1
has in common with the closure-based SCT algorithm [Lee et al. 2001] can be
observed by noticing that the absolute values of labels on the arcs of graphs in S
are bounded by the B(G) ·∆. As there are at most (k + 1)k different (unlabeled)
graphs, we obtain

|S| < (k + 1)k · (B(G) ·∆)k;

when the number of parameters k is constant and ∆ is at most polynomial in m, |S|
is polynomial in m. It is not hard to verify that this also means that the running
time of the algorithm is polynomial. Similarly, the closure-based SCT algorithm
is polynomial-time if k is fixed. There is a difference however between the two
situations inasmuch as the SCT algorithm is fixed-parameter tractable [Downey
and Fellows 1995] for the parameter k, while Algorithm 4.1 is not (due to the mk2

factor in the time bound).

4.5.2 Graphs with fan-in. The fact that fan-in freedom is necessary for our algo-
rithm stands in tension with the natural tendency to be greedy while constructing
size-change graphs and include as many arcs as possible, since it is not yet known
which will be pertinent to termination.

Let δSCT∗ be the set of δSCT instances G such that after deleting some (possibly
empty) set of size-change arcs from G, a fan-in free instance remains that satisfies
δSCT. We call such instances “positive instances without material fan-in.” As an
easy corollary of the last theorem, δSCT∗ is also in PSPACE: it suffices to perform
a brute-force search over sets of arcs for deletion. Obviously, this approach is not
ACM Transactions on Programming Language and Systems
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practically appealing. A more practical one would be to make use, when possible, of
sound criteria for deleting arcs, as done in [Ben-Amram and Lee 2007] with respect
to SCT.

5. δSCT AND OTHER TERMINATION ANALYSES

This section discusses interesting connections between this work and some other
ideas from the field of termination analysis (besides SCT).

5.1 Linear ranking functions

The essential characteristic of SCT analysis that sets it apart from much other
work on termination (see for example the survey [Schreye and Decorte 1994]) is
that we are not trying to synthesize a well-founded order on program states, or
explicitly find a “ranking function” that induces such an order. Yet, our problem
has interesting connections to such techniques. Sohn and Van Gelder [1991] present
a method that aims to find, for every function f(x1, . . . , xn), a linear combination
a1x1 + · · · + anxn, with ai ≥ 0, whose value is guaranteed to decrease in every
call-cycle from f to f (to simplify notation, we treat the arguments xi as natural
numbers). To find the coefficient vector ~a, their algorithm solves a linear program.
In the simple case of a single function with in-situ graphs (Section 4.3), the linear
program is exactly the same that we presented. Indeed, it is not hard to verify
(using the duality theorem of linear programming) that the linear combination
sought by Sohn and Van Gelder’s method exists if and only if δSCT is satisfied.
For example, the example in Figure 3 on Page 5 has the linear ranking function
2x + 3y.

However, with slightly more complicated instances of δSCT, it becomes possible
that no single linear combination can serve as a ranking function. An example is
the following program (which even satisfies SCT):

f(x,y) = if xy>0 then f(x-1,x-1) + f(y-1,y-1) else 1

5.2 Non-linear ranking functions

While the above example does not have a linear ranking function, it can be fitted
with the simple non-linear ranking functions max(x, y). It was proved only recently
by Lee that every program that terminates by SCT can be provided with a ranking
function constructed from the program’s variables plus certain constants and the
operators min, max and lexicographic tupling [Lee 2006]. The function has the
property that for every call f

c→ g, the size-change graph Gc implies a decrease
in the ranking function’s value. One might speculate about an extension of this
result to δSCT programs, say using linear combinations in addition to the above
operators. This may be the case for fan-in free graphs (we do not know), but is
certainly not so for δSCT in general. Here’s the proof: the ranking functions of a
class of this style (even with some other operators) can be recursively enumerated,
and checked against the size-change graphs. If every program that terminates by
δSCT had such a ranking function, we would deduce that δSCT ∈ RE. However, the
reduction in Section 3 implies the converse, because we reduced from non-halting
to δSCT.
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5.3 Multiple ranking functions

Instead of choosing a single ranking function that should descend over every loop,
one can choose a finite set of ranking functions such that every possible loop (cycle
in the control-flow graph) decreases one of them (the rest may even increase). That
this suffices for termination can be proved by Ramsey’s theorem, as in [Dershowitz
et al. 2001; Podelski and Rybalchenko 2004]. Such a “disjunctive ranking-function
construction” is just what Algorithm 4.1 does—except that it focuses on cycles that
yield idempotent size-change graphs.

Codish, Lagoon and Stuckey [2005] show that in a positive SCT instance, it is
possible to deduce a linear ranking function for every cycle, not only those associ-
ated with idempotent graphs. The same argument applies to δSCT. It follows that
when our algorithm succeeds in verifying δSCT, it can also produce a set of linear
ranking functions to cover all possible cycles. Thus, both for SCT and δSCT, the
local or “disjunctive” approach simplifies the form of ranking functions necessary
in a ranking-function based termination proof. Put otherwise, we learn that ap-
proaches to termination that rely on disjunctions of ranking functions (e.g., [Cook
et al. 2005]) are justified, at least for δSCT instances, in restricting the functions
to linear.

5.4 Handling non-well-founded data types

One difficulty in applying SCT analysis to programs in common imperative lan-
guages is that loop variables in these programs are frequently of type integer, not
a well-founded domain. Instead of descent towards the “bottom” of the data type,
loop termination follows from either descent or ascent towards a bound determined
by the loop conditions and perhaps other variables. Colón and Sipma [2002] il-
lustrate an approach for handling such programs. They use linear-programming
techniques both for deducing bounded expressions and for determining which of the
bounded expressions can be used as a ranking function.

As noted in [Colón and Sipma 2002], the pertinent bounded expressions are often
single variables. This indicates that SCT may furnish the termination proof. In
fact, of three example programs given in [Colón and Sipma 2002], the first two
are SCT instances (once bounded variables have been determined); the third (“a
program derived from McCarthy’s 91 function”) satisfied δSCT.

Avery [2006] presents another, somewhat more involved, combination of bound
analysis and SCT, that also captures the two examples mentioned above. In the
first stage of his algorithm, the analysis determines bounded linear expressions—
not necessarily single variables; this stage does not rely on size-change graphs. In
a second stage, the algorithm attempts to prove that for every cyclic SCT graph,
one of the bounded expressions descends whenever the correponding cycle in the
program is completed. This approach would work with δSCT (in the fan-in free
case) as well.4

5.5 Partial solutions

Prior to this work, Anderson and Khoo [2003] had proposed to extend the SCT
algorithm in a way that allows a more expressive abstraction (general linear con-

4Thanks to James Avery for pointing this out.
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straints) to be exploited. Since δSCT graphs are more restricted, their algorithm
cannot be judged only on its coverage of the δSCT problem, but let us do that for
the sake of relating their approach to the purpose of this paper. In this setting,
the effect of their method can be roughly described as follows: instead of eagerly
replacing every δSCT graph by its SCT approximation, the algorithm composes the
given graphs along computation paths, thus obtaining more precise SCT graphs for
the CFG cycles. Ultimately, all cycles have to be shown terminating via the SCT
abstraction. For a simple example, consider a case where a size-change graph with
arc x

+1→ y is followed by one with y
−2→ z. The algorithm will deduce the SCT arc

x
↓→ z. Thus the method is stronger than näıve transformation to SCT, and yet

it is not powerful enough to handle δSCT instances where a subtler reasoning is
necessary, such as the examples on Pages 5 and 10.

6. CONCLUSION

We investigated the decidability of δSCT, a criterion for inferring program ter-
mination from a control-flow graph annotated with size-change information. This
criterion seems to be a natural one and at least implicitly indicated in much previous
work, though apparently avoided for lack of a decision procedure. We have shown
the general case to be undecidable, but provided an algorithm for an important
restricted case, namely fan-in free instances.

While we have settled the theoretical question regarding decidability and com-
plexity class of δSCT, the positive result seems far from practical application. Cer-
tainly, this paper does not provide algorithms that appear to be anywhere near
practical efficiency. There are, however, reasons for optimism:

—Termination of programs is, in general, undecidable, which could be interpreted
as a “no entry” sign. Nevertheless, the field of termination checking is thriving,
as witnessed by the existence of a workshop devoted to the subject—WST (whose
9th meeting is already scheduled as these lines are being written). The field is
well represented in symposia such as TACAS, SAS, RTA and CAV, to name
just a few. The work presented in these conferences shows that termination
checking (in various forms) is gaining industrial strength (consider, for example,
the experiences reported in [Cook et al. 2006; Manolios and Vroon 2006]).

—The paper that presented SCT [Lee et al. 2001] was quite theoretical and only
presented a complexity result—PSPACE completeness of the decision problem.
Nonetheless, as we soon found out, SCT decision had been implicit in the Prolog
termination provers [Lindenstrauss and Sagiv 1997b; Codish and Taboch 1999],
which are demonstration tools, but do show practicality of the algorithms to
some degree. Recently, Manolios and Vroon [Manolios and Vroon 2006] applied
SCT analysis to a vast benchmark suite of over 10,000 functions in the ACL2
functional language, representing all kinds of applications of program verification.

The restriction to fan-in free instances may also appear to be a drawback, noting
that the proposal in Section 4.5.2 of trying fan-in free subgraphs by brute force is
rather unattractive. However, the program sample we studied in [Ben-Amram and
Lee 2007] turned out to exhibit a tiny number of occurrences of fan-in once certain
safe “clean-up” steps were taken. Certainly, such a study cannot be conclusive;
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but it points out that fan-in may not be such a big hindrance, even in Prolog
programs where our intuition was that fan-in would be likely to occur as a result
of unifications.

On the theoretical side, this work suggests the challenge of further exploring the
range of (abstract) termination analysis problems that can be decided precisely and
their computational complexity.

We pose two specific open problems:

(1) Is there an FPT algorithm (say, in (k,∆)) for δSCT?
(2) Can all programs that satisfy fan-in free δSCT be fitted with a ranking function

of some (relatively) simple form, deducible from the size-change graphs?

Acknowledgments

I am obliged to Andreas Podelski and Chin Soon Lee for proposing the problem.
Many stimulating discussions with Chin Soon Lee are also gratefully acknowledged,
as are his invaluable comments on earlier versions of the manuscript. The QuickSort
example originated with Chin Soon Lee and was given its current form by one of the
referees. The anonymous referees have done a thorough job and their contributions
are much appreciated.

A. APPENDIX: PROOF OF LEMMA 4.21

In this appendix we prove Lemma 4.21. As in Section 4, we assume an ACG of m
functions and k parameters in each, and all size-change graphs fan-in free. Let us
recite the claims to be proved:

For every cyclic G-multipath M , beginning and ending at any function f , a
normal extended multipath E = M0

∏n
i=1 Gri

i exists such that:
(i) E ≡ M (we say that E represents M).
(ii) There are nonnegative numbers b0, . . . , bn such that for all sequences l0 ≥
b0, . . . , ln ≥ bn, (M0)l0

∏n
i=1 Gli

i is equivalent to some cyclic G-multipath of length
bounded by L

∑n
i=0 li. The numbers bi satisfy:

∑
i bi ≤ (k + 1)k ·m.

We begin by describing the process of obtaining E from M . Briefly, we start
with M and apply a series of reductions (Definition 4.9), collecting powers of in-
situ graphs at the end. Since the set of in-situ graphs changes along the way, it is
inconvenient to use number indices (Gxi

i ). Instead, we use the size-change graph
itself to index the exponent: GxG . This emphasizes that the order of the G’s is
immaterial. We use the letter S for the set of in-situ graphs.

Definition A.1. Let E1 = M
∏

G∈S GlG , E2 = M ′ ∏
G∈S′ GrG be extended mul-

tipaths. We write E1 ⇒B E2 if: B is a nonempty, irreducible multipath; M = ABC

with B ≺ C; M ′ = AC; S′ = S ∪ {H} with H = bBc
C ; and rG = lG for all G ∈ S′

except that rH = lH + 1 (rH = 1 if H /∈ S).
We write E1 ⇒ E2 if E1 ⇒B E2 for some B.

Let M be a multipath beginning and ending at any function f . By repeatedly
reducing M as long as a redex exists, always picking an irreducible redex (e.g., a
shortest one), it follows quite easily that M ⇒∗ E such that E is normal, proving
Claim (i). It is also easy to see that the “stem” M0 of E is cyclic if M is. We
proceed to prove Claim (ii) with the help of some auxiliary definitions.
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Definition A.2. A sequence (M0, B1, B2, . . . , Bt) of irreducible multipaths is con-
sistent if there exists a multipath Et and extended multipaths Et−1, . . . , E0 such
that

Et ⇒Bt
Et−1 ⇒Bt−1 · · · ⇒B1 E0 = M0

∏
G∈S0

GrG .

If the above condition holds, we say that the reduction sequence Et ⇒ · · · ⇒ E0

implements (M0, B1, B2, . . . , Bt). There can be different implementations of the
same sequence!

Definition A.3. For any multipath M , define M to be the graph M with arc
labels removed. For multipaths M and N , let N / M represent the relation “N is
a suffix of M .” We define σ(M)

def
= {N | N / M}. If E is an extended multipath,

E = M
∏

Gxi
i , σ(E) is defined to be σ(M).

In a reduction ABC ⇒ AC bBc
C , we have σ(ABC) ⊇ σ(AC). For if N is a suffix

of C, then it is a suffix both of AC and of ABC; while if N = A′C, with A′ / A,
then N ' A′BC by Lemma 4.8. Thus, E1 ⇒ E2 implies σ(E1) ⊇ σ(E2).

Definition A.4. Let (M0, B1, B2, . . . , Bt) be consistent, and implemented by Et ⇒
· · · ⇒ E0. Let the subsequence K = (i1 < · · · < is) of critical indices be defined
by: i ∈ K iff σ(Ei) ⊃ σ(Ei−1).

LEMMA A.5. Let (M0, B1, B2, . . . , Bt) be consistent, and implemented by Et ⇒
· · · ⇒ E0. Let K = (i1 < · · · < is) be the critical indices. Then (M0, Bi1 , . . . , Bis

)
is consistent and has an implementation E′

s ⇒ · · · ⇒ E′
1 ⇒ E′

0. We further have:
(i) σ(E′

j) = σ(Eij ) for all j,
(ii) |E′

s| ≤ (k + 1)k ·m · s.

Proof. We use induction on t. For t = 0, K is empty and the claim is trivial.
Now, assume correctness for t− 1. There are now two cases.
Case 1: t is not critical. There is nothing to prove. But note that σ(Et) = σ(Et−1).
Case 2: t = is is critical. I.e., σ(Et) ⊃ σ(Et−1). Using the induction hypothesis
and the definition of K, we have

σ(Et−1) = σ(Et−2) = · · · = σ(Eis−1) = σ(E′
s−1). (3)

Let us write the reduction Et ⇒Bt Et−1 explicitly as

ABtC
∏
G∈S

GlG ⇒ ACH
∏
G∈S

GlG ≡ AC
∏

G∈S′

GrG ,

with H = bBtc
C . The conditions for reduction require that Bt ≺ C, or equivalently,

Bt;C ' C. By (3), C ∈ σ(Eis−1) = σ(E′
s−1). I.e., C = N with N / E′

s−1. Thus
Bt;N ' N , and we can insert Bt into E′

s−1 just before N , obtaining E′
s such that

E′
s ⇒Bt E′

s−1

bBtc
N

= E′
s−1H.

Moreover, by the observations following Definition A.3, we see that

σ(E′
s) = σ(E′

s−1) ∪ {BN | B / Bt} = σ(Et−1) ∪ {BC | B / Bt} = σ(Et).
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By adding H to the end of E′
s−2, . . . , E

′
0 we complete the proof of the induction

claim.
The bound on |E′

s| follows from M0 and the Bi being irreducible.

LEMMA A.6. Let (M0, B1, B2, . . . , Bt) be consistent, and implemented by Et ⇒
· · · ⇒ E0. Let K = (i1 < · · · < is) be the critical indices. Then |K| < (k + 1)k ·m.

Proof. A simple counting argument, noting that σ(Ei) is a set of unlabeled,
fan-in free size-change graphs, with varying source functions but a fixed target, that
has to grow at each critical index i.

We are now ready to prove Claim (ii) of Lemma 4.21, as repeated at the top
of this appendix. Recall that E = M0

∏
G∈S GrG has been obtained from M by a

reduction sequence. The last two lemmas allows us to construct a multipath M ′

that, via a sequence of less than (k + 1)k ·m steps, reduces to E′
0 = M0

∏
G∈S′ GbG

where S′ ⊆ S (because the redexes are a subset of the original ones). Observe
that

∑
G∈S′ bG is just the length of the (smaller) reduction sequence and therefore

smaller than (k + 1)k · m; add b0 = 1 and we have
∑

bi ≤ (k + 1)k · m. Also,
σ(M ′) = σ(M) = σ(E); moreover, M ' M ′ ' M0.

Finally, consider any set L = {lG | G ∈ S} with lG ≥ bG for all G (if G ∈
S \ S′, we set bG = 0). And let l0 ≥ 1. We claim that EL = (M0)l0

∏
G∈S GlG is

equivalent to some G-multipath of length at most (k + 1)k ·m · (l0 +
∑

G lG). Such
a multipath can be obtained by constructing an appropriate reduction sequence
in reverse: begin with the reduction sequence that reduces M ′ to E′

0. Note that
E′

0 is embedded inside EL by the assumption on the lG values. Extend E′
0 with

additional copies of M0 at the beginning, and graphs G at the end, as necessary,
to obtain EL; by carrying the same additions all along the reduction sequence, we
obtain a reduction sequence that begins with (M0)l0−1M ′ ∏

G∈S GlG−bG and ends
with EL. It rests to add reduction steps (in reverse) that generate the remaining
in-situ graphs (i.e., G ∈ S where lG − bG > 0). Let G be one such graph. As G
appears in our original E, we know that the reduction sequence M ⇒∗ E includes
a step Ei ⇒Bi

Ei−1 with G = Bi. Thus Ei = ABiC
∏

G∈Si
Gr

(i)
G with Bi ≺ C.

By definition, C ∈ σ(Ei) ⊆ σ(E) = σ(M ′), i.e., C = N with N / M ′. Hence it is
possible to create a reverse reduction step that removes G from the trailing set and
inserts Bi in M ′ without affecting σ(M ′) (therefore, also M ′ is unaffected). This
can be repeated until all the trailing in-situ graphs are removed and we obtain a
valid multipath (M0)l0−1M ′′ that reduces to EL. This multipath is cyclic because
M0 = M ′′ = M ′ is idempotent. The bound of the length of the multipath is
immediate from the irreducibility of M0 and the redexes.
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