
Linear, Polynomial or Exponential?

Complexity Inference in Polynomial Time

(Extended Abstract)

Amir M. Ben-Amram1,�, Neil D. Jones2, and Lars Kristiansen3

1 School of Computer Science, Tel-Aviv Academic College, Israel
2 DIKU, the University of Copenhagen, Denmark

3 Department of Mathematics, University of Oslo, Norway
amirben@mta.ac.il, neil@diku.dk, larskri@iu.hio.no

Abstract. We present a new method for inferring complexity properties
for imperative programs with bounded loops. The properties handled are:
polynomial (or linear) boundedness of computed values, as a function of
the input; and similarly for the running time.

It is well known that complexity properties are undecidable for a
Turing-complete programming language. Much work in program analysis
overcomes this obstacle by relaxing the correctness notion: one does not
ask for an algorithm that correctly decides whether the property of in-
terest holds or not, but only for “yes” answers to be sound. In contrast,
we reshaped the problem by defining a “core” programming language
that is Turing-incomplete, but strong enough to model real programs
of interest. For this language, our method is the first to give a certain
answer; in other words, our inference is both sound and complete.

The essence of the method is that every command is assigned a “com-
plexity certificate”, which is a concise specification of dependencies of
output values on input. These certificates are produced by inference rules
that are compositional and efficiently computable. The approach is in-
spired by previous work by Niggl and Wunderlich and by Jones and
Kristiansen, but use a novel, more expressive kind of certificates.

Keywords: implicit computational complexity, polynomial time com-
plexity, linear time complexity, static program analysis.

1 Introduction

Central to the field of Implicit Computational Complexity (ICC) is the following
fundamental observation: it is possible to restrict a programming language syn-
tactically so that the admitted programs will possess a certain complexity, say
polynomial time. Such results lead to a sweet dream: the “complexity-certifying
compiler,” that will warn us whenever we compile a non-polynomial algorithm.

Since (as is well known) deciding such a property precisely for any program
in a Turing-complete language is impossible, the goal in this line of research is
� Research performed while visiting DIKU, the University of Copenhagen, Denmark.

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 67–76, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

68 A.M. Ben-Amram, N.D. Jones, and L. Kristiansen

to extend the capabilities of the certifying compiler as much as possible, while
taking into account the price: in other words, explore the tradeoff between the
completeness of the method and the method’s complexity. At any rate, we insist
on the certification being sound—no bad programs shall pass.

The method presented in this paper is a step forward in this research program.
It can be used to certify programs as having a running time that is polynomial in
certain input values; we also present a variant for certifying linear time. Further,
we determine which variables have values that are polynomially (or linearly)
bounded. The latter is, in fact, the essential problem: since we will only consider
bounded loops, deriving bounds on the running time amounts to deriving a
bound on the counters that govern the loops.

Our work complements previous research by Kristiansen and Niggl [KN04],
Niggl and Wunderlich [NW06], and Jones and Kristiansen [JK08]. All methods
apply to a structured imperative language. The last two, in particular, take the
form of a compositional calculus of certificates—to any command a “certificate”
is assigned which encodes the certified properties of the command, and a cer-
tificate for a composite command is derived from those of its parts. We keep
this elegant structure, but use a new kind of certificates designed to accurately
discern phenomena such as accumulator variables in loops (think of a command
X := X+Y within a loop) as well as self-multiplying variables (X := X+X).

Normally, in theoretical research such as this, one does not bother with al-
gorithms for analysing a full-featured practical programming language, but con-
siders a certain core language that embodies the features of algorithmic interest.
It is well known that one can strip a lot of “syntactic sugar” out of any practical
programming language to obtain such a core which is still Turing-complete, and
once a problem is solved for the core, it is as good as solved for the full lan-
guage (up to implementing the appropriate translations). We go a step further
by proposing that if certain features are beyond the scope or our analysis, getting
rid of them is best done in the passage to the core language. Here is the proto-
typical example: Very often, program analyses take a conservative approach to
modelling conditionals: both branches are treated as possible. Since our analysis
also does so, we include in our core language only the following form for the
conditional command: if ? then C1 else C2 .

Here C1, C2 represent commands, while the question mark represents that the
conditional expression is hidden. In the core language, this command has a non-
deterministic semantics. Thus, the passage to the core language is an abstracting
translation: it abstracts away features that we overtly leave out of the scope of
our analysis. Our point of view is that it is beneficial to separate the concern of
parsing and abstracting practical programs (the front end) from the concern of
analysing the core language (the back end). A simple-minded abstraction (e.g.,
really just hiding the conditionals) is clearly doable, so there should be no doubt
that a front end for a realistic language can be built. Current static analysis
technology allows the construction of sophisticated front ends. Our theoretic ef-
fort will concentrate on the “back end”—analysing the core language. The reader

Linear, Polynomial or Exponential? Complexity Inference 69

X ∈ Variable ::= X1 | X2 | X3 | . . . | Xn

e ∈ Expression ::= X | (e + e) | (e * e)

C ∈ Command ::= skip | X:=e | C1;C2 | loop X {C}
| if ? then C else C

Fig. 1. Syntax of the core language. Variables hold nonnegative integers.

may want to peek at Figure 1, showing the syntax of the language. Its semantics
is almost self-explanatory, and is made precise in the next section.

The main result in this paper is a proof that the problems of polynomial and
linear boundedness are decidable for the core language. Our certification method
solves this problem completely: for example, for the problem of polynomial run-
ning time, we will certify a core-language program if and only if its time is
polynomially bounded. Furthermore, the analysis itself takes polynomial time.

A brief comparison with previous work. Both previous work we mentioned do not
use a core language to set a clear abstraction boundary. However, [JK08] treats
(implicitly) the same core language. Its inferences are sound, but incomplete, and
its complexity appears to be non-polynomial (this paper is, essentially, a journal
version of [JK05]—where completeness was wrongly claimed). The (implicit) core
language treated by [NW06] can be viewed as an extension of our core language.
When applied to our language, their method too is sound but incomplete (its
complexity is polynomial-time, like ours).

2 Problem Definition

The syntax of our core language is described in Figure 1. In a command loop X {C},
variable X is not allowed to appear on the left-hand side of an assignment in the
loop body C.

Data. It is most convenient to assume that the only type of data is nonnegative
integers. More generality is possible but will not be treated here.

Command semantics. As already explained, the core language is nondetermin-
istic. The if command represents a nondeterministic choice. The loop command
loop X� {C} repeats C a number of times bounded by the value of X�. Thus, it
is also nondeterministic, and may be used to model different kinds of loops (for-
loops, while-loops) as long as a bounding variable can be statically determined.

While the use of bounded loops restricts the computable functions to the
primitive recursive class, this is still rich enough to make the problem challenging
(and it can still be pushed to undecidability, if we give up the abstraction and
include conventional, deterministic conditionals, such as an equality test1).

1 Undecidability for such a language can be proved by a reduction from Hilbert’s 10th
problem.

70 A.M. Ben-Amram, N.D. Jones, and L. Kristiansen

The formal semantics associates with every command C over variables X1, . . . , Xn

a relation [[C]] ⊆ N
n × N

n. In the expression �x[[C]]�y, vector �x (respectively �y) is
the store before (after) the execution of C.

The semantics of skip is the identity. The semantics of an assignment leaves
some room for variation: either the precise value of the expression is assigned, or
a nonnegative integer bounded by that value. The latter definition is useful for
abstracting non-arithmetic expressions that may appear in a real-life program.
Because our analysis only derives monotone increasing value bounds, this choice
does not affect the results. Finally, composite commands are described by the
straight-forward equations:

[[C1; C2]] = [[C2]] ◦ [[C1]]
[[if ? then C1 else C2]] = [[C1]] ∪ [[C2]]

[[loop X� {C}]] = {(�x, �y) | ∃i ≤ x� : �x[[C]]i�y}

where [[C]]i represents [[C]] ◦ · · · ◦ [[C]] (i occurrences of [[C]]).
For every command we also define its step count (informally referred to as

running time). For simplicity, the step count of an atomic command is defined
as 1. The step count of a loop command is the sum of the step counts of the
iterations taken. Because of the nondeterminism in if and loop commands, the
step count is also a relation. We also refer to the iteration count , which only
grows by one each time a loop body is entered. The iteration count is linearly
related to the step count, but is easier to analyse.

Goals of the analysis. Our polynomial-bound calculus (Section 3) reveals, for
any given command, which variables are bounded throughout any computation
by a polynomial in the input variables2. The linear-bound calculus (Section 4)
identifies linearly-bounded variables instead. Finally, Section 5 extends these
methods to characterize commands where the maximum step count is bounded
polynomially (respectively, linearly).

As a by-product, the analysis reveals which inputs influence any specific out-
put variable.

An example. In the following program, all variables are polynomially bounded
(we invite the reader to check); this is not recognized by the previous methods.
In the next section we explain how the difficulty illustrated by this example was
overcome.

loop X5 {
if ? then { X3 := X1+X2; X4 := X2 }

else { X3 := X2; X4 := X1+X2 };
X1 := X3 + X4;

}

2 Thus, as pointed out by one of the reviewers, the title of this paper is imprecise:
we distinguish polynomial growth from super-polynomial one, be it exponential or
worse.

Linear, Polynomial or Exponential? Complexity Inference 71

3 A Calculus to Certify Polynomial Bounds

Our calculus can be seen as a set of rules for abstract interpretation of the core
language, in the sense of [Cou96]3. The maximal output value resulting of a given
command C is some function f of the input values x1, . . . , xn. There are infinitely
many possible functions; we map each one into an abstract value of which there
are finitely many. Each abstract value V is associated with a concretisation γ(V)
which is a (possibly infinite) set of functions such that f is bounded by one of
them.

Let D = {0, 1, 1+, 2, 3} with order 0 < 1 < 1+ < 2 < 3. Informally, D is a set
of dependency types, describing how a result depends on an input, as follows:

value 3 2 1+ 1 0
dependency at least

type exponential polynomial additive copy none

The notation [x = y] below denotes the value 1 if x = y and 0 otherwise.

Definition 1. Let V ∈ D
n. The concretisation γ(V) includes all functions de-

fined by the following rules, and none others. (1) If there is an i such that
Vi = 1, then γ(V) includes f(�x) = xi. (2) γ(V) includes all polynomials of form
(
∑

i aixi) + P (�x), where ai ≤ [Vi = 1+], and P is a polynomial of non-negative
coefficients depending only on variables xi such that Vi = 2. (3) If there is an i
such that Vi = 3, then γ(V) is the set of all n-ary functions over N.

A core-language expression e obviously describes a polynomial and it is
straight-forward to obtain a minimal vector α(e) such that γ(α(e)) includes
that polynomial.

A basic idea (going back to [NW06]) is to approximate the relation �x[[C]]�y by a
set of vectors V1, . . . , Vn that describe the dependence of y1, . . . , yn respectively
on �x. We combine the vectors into a matrix M ∈ D

n×n where column j is Vj .
Thus, Mij is the dependency type of yj on xi. A complementary and useful view
is that Mij describes a data-flow from xi to xj . In fact, M can be viewed as a
bipartite, labeled digraph where the left-hand (source) side represents the input
variables and the right-hand (target) side represents the output. The set of arcs
A(M) is the set {i → j | Mij 	= 0}. A list of arcs may also be more readable
than a matrix. For example, consider the command loop X3 {X1:= X1+ X2} or
the command X1:= X1+X3∗X2. Both are described (in the most precise way) by

the following collection of arcs: X2
1→ X2, X3

1→ X3, X1
1+

→ X1, X2
2→ X1, X3

2→ X1

or, as a matrix,

⎡

⎣
1+ 0 0
2 1 0
2 0 1

⎤

⎦.

Such matrices/graphs make an elegant abstract domain (or “certificates”) for
commands because of the ease in which the certificate for a composite command
3 Abstract interpretation is a well-developed theoretical framework, which can shed

light on our algorithm. However in this paper we avoid relying on prior knowledge
of abstract interpretation.

72 A.M. Ben-Amram, N.D. Jones, and L. Kristiansen

can be derived. Let � denote the LUB operation on D, and extend it to ma-
trices (elementwise). If M1, M2 describe commands C1, C2, it is not hard to see
that M1 �M2 describes if ? then C1 else C2. For transferring the sequential
composition of commands to matrices, we define the following operation: a · b is
0 if either a or b is 0, and otherwise is the largest of a and b. Intuitively, compo-
sition should be represented by matrix product using · as “multiplication.” The
problem, though, is what result an “addition” ⊕ of 1+s should be. Consider the
commands

C1 = X2 := X1; X3 := X1

C2 = X1 := X2 + X3

The graph representing C1 has arcs X1
1→ X2, X1

1→ X3 and the graph for C2

has X2
1+

→ X1, X3
1+

→ X1. Hence entry M11 of the matrix for C1; C2 has value
1 · 1+ ⊕ 1 · 1+ = 1+ + 1+. And for this example, the right answer is 2, because
the command doubles X1 (and in a loop, X1 will grow exponentially). However,
the graph for C1′ = if ? then X2 := X1 else X3 := X1 also includes the arcs
X1

1→ X2, X1
1→ X3, but when C1′ is combined with C2, no doubling occurs.

Our conclusion is that matrices are just not enough, and in order to allow for
compositional computation, our certificates retain additional information. Basi-
cally, we add to the matrices another piece of data which distinguishes between
a pair of 1’s that arises during a single computation path (as in C1) and a pair
that arises as alternatives (as in C1′). We next move to the formal definitions.

3.1 Data Flow Relations

A few notations : We use A1(M) to denote the set of arcs labeled by {1, 1+}. For
any set S, C2(S) is the set of 2-sets (unordered pairs) over S. For M ∈ D

n×n,
we define r(M) to be C2(A1(M)). The identity matrix I has 1 on the diagonal
and 0 elsewhere.

A dataflow relation, or DFR, is a pair (M, R) where M ∈ D
n×n (and has the

meaning described above) and R ⊆ C2(A1(M)). Thus, R consists of pairs of
arcs.

For compactness, instead of writing {i → j, i′ → j′} ∈ R we may write
R(i, j, i′, j′).

Definitions: Operations on matrices and DFRs.
1. A ⊗ B is (�, ·) matrix product over D.

2. (M1, R1) � (M2, R2)
def
= (M1 � M2, (R1 ∪ R2) ∩ C2(A1(M1 � M2))).

3. (M, R) · (M ′, R′)
def
= (M ′′, R′′), where:

M ′′ = (M ⊗ M ′) � {i 2→ j | ∃s 	= t.R(i, s, i, t) ∧ R′(s, j, t, j)}
R′′ = {{i → j, i′ → j′} ∈ C2(A1(M ′′)) | ∃s, t.R(i, s, i′, t) ∧ R′(s, j, t, j′)}

∪ {{i → j, i → j′} ∈ C2(A1(M ′′)) | ∃s.(i, s) ∈ A1(M) ∧ R′(s, j, s, j′)}
∪ {{i → j, i′ → j} ∈ C2(A1(M ′′)) | ∃s.R(i, s, i′, s) ∧ (s, j) ∈ A1(M ′)}.

Linear, Polynomial or Exponential? Complexity Inference 73

Observe how the rule defining M ′′ uses the information in the R-parts to
identify computations that double an input value by adding two copies of it,
a situation described by the diamond :

i

t

s

j���

���

���

���

The reader may have guessed that if this situation occurs in analysing a
program, the two meeting arcs will necessarily be labeled with 1+.

Proposition 1. The product is associative and distributes over �, i.e.,
(M, R) · ((M1, R1) � (M2, R2)) = ((M, R) · (M1, R1)) � ((M, R) · (M2, R2)) .

4. Powers: defined by (M, R)0 = (I, r(I)) and (M, R)i+1 = (M, R)i · (M, R).

5. Loop Correction: for a DFR (M, R), define LC�(M, R) = (M ′, R′) where M ′

is identical to M except that:
(a) For all j such that Mjj ≥ 2, M ′

�j = 3;
(b) For all j such that Mjj = 1+, M ′

�j = M�j � 2;
and R′ = R ∩ C2(A1(M ′)).
Remarks: Rule (a) reflects the exponential growth that results from mul-
tiplying a value inside a loop. If Xj is doubled, it will end up multiplied
by 2x� . Rule (b) reflects the behaviour of accumulator variables. Intuitively,
Mjj = 1+ reveals that some quantity y is added to Xj in the loop. Therefore,
the effect of the loop will be to add x� · y, hence the correction to M�j .

6. Loop Closure: For a given �, the loop closure with respect to X� is the limit
(M∗, R∗) of the series (Mi, Ri) where:

(�)
(M0, R0) = (I, r(I))
(M1, R1) = (M0, R0) � (M, R)

(Mi+1, Ri+1) = (LC�(Mi, Ri))2

This closure can be computed in a finite (polynomial) number of steps be-
cause the series is an increasing chain in a semilattice of polynomial height.
A more natural specification of the closure may be the following: (M∗, R∗)
is the smallest DFR that is at least (I, r(I)) and is fixed under both multi-
plication by (M, R) and under Loop Correction (the meaning of “smallest”
and “at least” has yet to be made precise). However, the definition above
(as a limit) is the useful one from the algorithmic point of view.

Calculation of DFRs

The following inference rules associate a DFR with every core-language com-
mand. The association of (M, R) with command C is expressed by the judgment
� C : M, R.

(Skip) � skip : I, r(I)

74 A.M. Ben-Amram, N.D. Jones, and L. Kristiansen

(Assignment)
α(e) = V

� Xi:= e : M, r(M)

where M is obtained from I by replacing the ith column with V .

(Choice)
� C1 : M1, R1 C2 : M2, R2

� if?then C1else C2 : (M1, R1) � (M2, R2)

(Sequence)
� C1 : M1, R1 C2 : M2, R2

� C1; C2 : (M1, R1) · (M2, R2)

(Loop)
� C : M, R

� loop X�{C} : (M∗, R∗)

where (M∗, R∗) is the loop closure of (M, R) with respect to X�.
The DFR for a command can always be computed in time polynomial in the

size of the command (i.e., the size of its abstract syntax tree). This is done
bottom up, so (since the calculus is deterministic) every node is treated once.
The work per node is the application of one of the above rules, each of which is
polynomial-time.

4 Certifying Linear Bounds

We present an adaption of the method to certify linear bounds on variables.
Essentially the only change is that when something is deduced to be non-linear,
it is labeled by a 3. Thus, 2’s only describe linear bounds. This is summarized
here:

value 3 2 1+ 1 0
dependency

type nonlinear linear additive copy none

For example: the command X1:= X1+2*X2 is described by X2
1→ X2, X2

2→ X1,

X1
1+

→ X1.
The calculus �lin for linear bounds deviates from the polynomiality calculus

(judgments �) only as follows.

1. In abstracting expressions into vectors V ∈ {0, 1, 1+, 2}n, we treat linear
expressions as before, while every occurrence of multiplication e1∗e2 creates
a Type-3 dependence on all variables in e1 and e2. Formally, the abstraction
and concretisation functions α, γ are replaced with appropriate αlin and γlin.

2. For a DFR (M, R), define LClin
� (M, R) = (M ′, R′) where M ′ is identical

to M except that: for all j such that Mjj ∈ {1+, 2}, M ′
�j = 3; and R′ =

R ∩ C2(A1(M ′)). LClin replaces LC in the calculation of the loop closure.

Linear, Polynomial or Exponential? Complexity Inference 75

5 Analysing Running Time

Recall that the iteration count grows by one each time a loop body is entered.
To certify that it is polynomially (or linearly) bounded, it suffices to include
an extra variable in the program that sums up the values of loop counters, and
certify that this variable is so bounded. We can extend our calculi to implicitly
include this variable, so that there is no need to actually modify the program.
This is achieved as follows.

1. Matrices become of order (n+1)×(n+1). Thus the identity matrix I includes
the entry Xn+1

1→Xn+1 which reflects preservation of the extra variable.
2. The inference rule for the loop command is modified to reflect an implicit

increase of the extra variable. The rule thus becomes:

(Loop)
� C : M, R

� loop X�{C} : M ′, R′

where M ′, R′ are obtained from the loop closure (M∗, R∗) by:

M ′ = M∗ � {� 1+

→ (n + 1), (n + 1) 1+

→ (n + 1)}
R′ = R∗ ∪ {{i → j, � → n + 1} | i → j ∈ A1(M)}

We assume that the reader can see that the implicit Xn+1 is treated by these
rules just as a variable that actually accumulates the loop counters.

6 Concluding Remarks

We have presented a new method for inferring complexity bounds for imperative
programs by a compositional program analysis. The analysis applies to a lim-
ited, but non-trivial core language and proves that the properties of interest are
decidable. We believe that this core-language framework is important for giving
a robust yardstick for a project: we have a completeness result, so we can say
that we achieved our goal (which, in fact, evolved from the understanding that
previous methods did not achieve completeness for such a language).

This work is related, on one hand, to the very rich field of program analysis
and abstract interpretation. These are typically targeted at realistic, Turing
complete languages, and integrating our ideas with methods from that field is
an interesting direction for further research, whether one considers expanding
our approach to a richer core language, or creating clever front-ends for realistic
languages.

Another connection is with Implicit Computational Complexity. In this field,
a common theme is to capture complexity classes. Our core language cannot
be really used for computation, but one can define a more complete language
that has a simple, complexity-preserving translation to the core language. For
example, let us provide the language with an input medium in the form of a

amirben
Text Box
*

76 A.M. Ben-Amram, N.D. Jones, and L. Kristiansen

binary string, and with operations to read it, as well as reading its length; and
then with a richer arithmetic vocabulary, including appropriate conditionals.
We obtain a “concrete” programming language Lconcrete that has an evident
abstracting translation T into the core language, and it is not hard to obtain re-
sults such as: f : N → N is PTIME-computable if and only if it can be computed
by an L program p such that T p is polynomial-time (and hence recognized so
by our method). We leave the details to the full paper. Note that no procedure
for inferring complexity will be complete for Lconcrete itself, precisely because it
is powerful enough to simulate Turing machines.

Finally, let us point out some directions for further research:

– Extending the core language. For instance, our language does not include
constants as do the languages considered in [KN04, NW06]. Neither does
it include data types of practical significance such as strings (these too are
present in the latter works).

– Investigating the design of front ends for realistic languages.
– Extending the set of properties that can be decided beyond the current

selection of linear and polynomial growth rates and running times.

Acknowledgement. We are grateful to the CiE reviewers for some very detailed
and helpful reviews.

References

[Cou96] Cousot, P.: Abstract interpretation. ACM Computing Surveys 28(2), 324–328
(1996)

[JK05] Jones, N.D., Kristiansen, L.: The flow of data and the complexity of algo-
rithms. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS,
vol. 3526, pp. 263–274. Springer, Heidelberg (2005)

[JK08] Jones, N.D., Kristiansen, L.: A flow calculus of mwp-bounds for complexity
analysis. ACM Trans. Computational Logic (to appear)

[KN04] Kristiansen, L., Niggl, K.-H.: On the computational complexity of imperative
programming languages. Theor. Comput. Sci. 318(1-2), 139–161 (2004)

[NW06] Niggl, K.-H., Wunderlich, H.: Certifying polynomial time and lin-
ear/polynomial space for imperative programs. SIAM J. Comput 35(5), 1122–
1147 (2006)

	Introduction
	Problem Definition
	A Calculus to Certify Polynomial Bounds
	Data Flow Relations

	Certifying Linear Bounds
	Analysing Running Time
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

